1.中国科学院 长春光学精密机械与物理研究所,长春 130031
2.中国科学院大学,北京 100049
扫 描 看 全 文
ZHAO Xinrui, DONG Yijia, NING Yongqiang, et al. Analysis of photonic lantern mode control performance fluctuations by gray matrix. [J]. Optics and Precision Engineering 31(19):2818-2826(2023)
ZHAO Xinrui, DONG Yijia, NING Yongqiang, et al. Analysis of photonic lantern mode control performance fluctuations by gray matrix. [J]. Optics and Precision Engineering 31(19):2818-2826(2023) DOI: 10.37188/OPE.20233119.2818.
为了分析光子灯笼用于光合束时的模式控制能力波动,建立算法提取光场灰度矩阵,使用数值计算结果替代角功率分布方差来分析光子灯笼模式控制能力随合束功率的波动。根据功率流方程与临近模耦合理论推导了算法的理论基础。从算法结构和灰度值提取精度参数两方面详细介绍灰度提取算法。通过对比复原图与原光场图,证明算法将光强分布情况转化成灰度值矩阵的数值准确性;最后,以自制的3×1光子灯笼在弱主动模式控制下的表现为例,分析其模式控制能力随合束功率变化导致的输出光质量与合束损耗的变化。实验结果解释了合束功率从0增加到270 mW时3×1光子灯笼的光合束损耗曲线斜率变化以及合束光最大高斯拟合度波动。算法能简单、快速地分析光子灯笼用于基模合束光制备时模式控制能力的波动情况,且环境敏感度低,光场功率分布提取准确率大于99%。
An algorithm was designed to assess the fluctuation in the mode control ability of the photonic lantern. This algorithm incorporated a module specifically for extracting the gray matrix from the light field image. To analyze the fluctuations in the photonic lantern's mode control along with the beam power, numerical results were used in place of angular power distribution variance. Initially, the theoretical foundation of the algorithm was established using the power flow equation and adjacent mode coupling theory. Following this, the gray extraction algorithm, detailing its structure and parameters were elaborated. By utilizing the gray matrix, a restored image was derived and compared with the original light field image. The findings confirmed that the algorithm effectively translates the light intensity distribution into a gray value matrix. Finally, the mode control changes of a custom 3×1 photonic lantern was evaluated under varying beam-combining power. During the experiment, the beam combining power was increased from 0 to 270 mW. The experimental outcomes indicate that our analysis accounts for the variations in the slope of the light beam combining loss curve for the 3×1 photonic lantern and the fluctuation in the maximum Gaussian fit degree of the combined beam as the power increases. In summary, this algorithm offers a simple and efficient method for assessing the fluctuation in the mode control ability of the photonic lantern when generating the fundamental mode beam. It exhibits low environmental sensitivity, and its accuracy in extracting light field data exceeds 99%.
半导体激光模式控制灰度矩阵光子灯笼光合束
diode lasermode controlgray matrixphotonic lanternbeam combining
ZHU H B, LIN X C, ZHANG Y W, et al. kW-class fiber-coupled diode laser source based on dense spectral multiplexing of an ultra-narrow channel spacing[J]. Optics Express, 2018, 26(19): 24723-24733. doi: 10.1364/oe.26.024723http://dx.doi.org/10.1364/oe.26.024723
ZHU H B, FAN S L, ZHAO J, et al. Development and thermal management of kW-class high-power diode laser source based on the structure of two-stage combination[J]. IEEE Photonics Journal, 2019, 11(3): 1-10. doi: 10.1109/jphot.2019.2912981http://dx.doi.org/10.1109/jphot.2019.2912981
DUAN X M, QIAN C P, SHEN Y J, et al. Efficient Ho: (Sc05Y05)2SiO5 laser at 21 µm in-band pumped by Tm fiber laser[J]. Optics Express, 2019, 27(4): 4522. doi: 10.1364/oe.27.004522http://dx.doi.org/10.1364/oe.27.004522
DUAN X M, WU J Z, DOU R Q, et al. High-power actively Q-switched Ho-doped gadolinium tantalate laser[J]. Optics Express, 2021, 29(8): 12471-12477. doi: 10.1364/oe.420706http://dx.doi.org/10.1364/oe.420706
LU H Y, TIAN S C, TONG C Z, et al. Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band[J]. Light: Science & Applications, 2019, 8: 108. doi: 10.1038/s41377-019-0214-2http://dx.doi.org/10.1038/s41377-019-0214-2
冯勇, 张文喜, 伍洲, 等. 半导体激光器电流调制实现短相干光源[J]. 光学 精密工程, 2021, 29(6):1321-1328. doi: 10.37188/ope.20212906.1321http://dx.doi.org/10.37188/ope.20212906.1321
FENG Y, ZHANG W X, WU ZH, et al. Short coherent light source based on current modulation in semiconductor lasers[J]. Opt. Precision Eng., 2021, 29(6):1321-1328.(in Chinese). doi: 10.37188/ope.20212906.1321http://dx.doi.org/10.37188/ope.20212906.1321
NING Y Q, CHEN Y Y, ZHANG J, et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114001. doi: 10.3788/aos202141.0114001http://dx.doi.org/10.3788/aos202141.0114001
LU Y, LIU W G, CHEN Z L, et al. Spatial mode control based on photonic lanterns[J]. Optics Express, 2021, 29(25): 41788. doi: 10.1364/oe.440326http://dx.doi.org/10.1364/oe.440326
LU Y, CHEN Z L, LIU W G, et al. Stable single transverse mode excitation in 50 µm core fiber using a photonic-lantern-based adaptive control system[J]. Optics Express, 2022, 30(13): 22435-22441. doi: 10.1364/oe.458997http://dx.doi.org/10.1364/oe.458997
CHEN T, LIU W G, XIE K, et al. Measurements on LP modes of the photonic lantern[C]. Proc SPIE 11455, Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, 2020, 11455: 1381-1387. doi: 10.1117/12.2565065http://dx.doi.org/10.1117/12.2565065
BENEDICTO D, COLLADOS M V, MARTÍN J C, et al. Contribution to the improvement of the correlation filter method for modal analysis with a spatial light modulator[J]. Micromachines, 2022, 13(11): 2004. doi: 10.3390/mi13112004http://dx.doi.org/10.3390/mi13112004
ZHU Z H, XIAO Y Y, YAO R M. CNN-based few-mode fiber modal decomposition method using digital holography[J]. Applied Optics, 2021, 60(24): 7400-7405. doi: 10.1364/ao.427847http://dx.doi.org/10.1364/ao.427847
WEI X M, JING J C, SHEN Y C, et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 2020, 9: 149. doi: 10.1038/s41377-020-00383-8http://dx.doi.org/10.1038/s41377-020-00383-8
GERVAZIEV M D, ZHDANOV I, KHARENKO D S, et al. Mode decomposition of multimode optical fiber beams by phase-only spatial light modulator[J]. Laser Physics Letters, 2021, 18(1): 015101. doi: 10.1088/1612-202x/abcf27http://dx.doi.org/10.1088/1612-202x/abcf27
YAN W, XU X J, WANG J G. Modal decomposition for few mode fibers using the fractional Fourier system[J]. Optics Express, 2019, 27(10): 13871-13883. doi: 10.1364/oe.27.013871http://dx.doi.org/10.1364/oe.27.013871
ZHOU X F, ZHANG D F, WANG Y B, et al. Beam quality analysis of output laser in a conventional photonic lantern excited by incoherent sources[C]. Proc SPIE 11850, First Optics Frontier Conference, 2021, 11850: 125-134. doi: 10.1117/12.2599420http://dx.doi.org/10.1117/12.2599420
EIDAM T, WIRTH C, JAUREGUI C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/oe.19.013218http://dx.doi.org/10.1364/oe.19.013218
JAUREGUI C, STIHLER C, LIMPERT J. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi: 10.1364/aop.385184http://dx.doi.org/10.1364/aop.385184
LUO X, CHEN P, WANG Y. Power content M2-values smaller than one[J].Applied Physics B, 2010, 98(1): 181-185. doi: 10.1007/s00340-009-3623-8http://dx.doi.org/10.1007/s00340-009-3623-8
LAN M Y, YU S, CAI S Y, et al. Mode multiplexer/demultiplexer based on tapered multi-core fiber[J]. IEEE Photonics Technology Letters, 2017, 29(12): 979-982. doi: 10.1109/lpt.2017.2700851http://dx.doi.org/10.1109/lpt.2017.2700851
CRUZ-DELGADO D, ALVARADO-ZACARIAS J C, COOPER M A, et al. Photonic lantern tip/tilt detector for adaptive optics systems[J]. Optics Letters, 2021, 46(13): 3292. doi: 10.1364/ol.430761http://dx.doi.org/10.1364/ol.430761
SAVOVIĆ S, SIMOVIĆ A, DRLJAČA B, et al. Power flow in graded-index plastic optical fibers[J]. Journal of Lightwave Technology, 2019, 37(19): 4985-4990. doi: 10.1109/jlt.2019.2926700http://dx.doi.org/10.1109/jlt.2019.2926700
SAVOVIĆ S, DJORDJEVICH A. Method for calculating coupling coefficient in W-type multimode optical fibers[J]. Laser Physics, 2021, 31(5): 055102. doi: 10.1088/1555-6611/abf094http://dx.doi.org/10.1088/1555-6611/abf094
FANG Z, XU X, LI X, et al. SPGD algorithm with adaptive gain [J]. Infrared and Laser Engineering, 2020,49(10): 20200274-20200271.
GLOGE D. Optical power flow in multimode fibers[J]. Bell System Technical Journal, 1972, 51(8): 1767-1783. doi: 10.1002/j.1538-7305.1972.tb02682.xhttp://dx.doi.org/10.1002/j.1538-7305.1972.tb02682.x
GAMBLING W A, PAYNE D N, MATSUMURA H. Mode conversion coefficients in optical fibers[J]. Applied Optics, 1975, 14(7): 1538-1542. doi: 10.1364/ao.14.001538http://dx.doi.org/10.1364/ao.14.001538
ROUSSEAU M, JEUNHOMME L. Numerical solution of the coupled-power equation in step-index optical fibers[J]. IEEE Transactions on Microwave Theory and Techniques, 1977, 25(7): 577-585. doi: 10.1109/tmtt.1977.1129162http://dx.doi.org/10.1109/tmtt.1977.1129162
GLOGE D. Optical power flow in multimode fibers[J]. Bell System Technical Journal, 1972, 51(8): 1767-1783. doi: 10.1002/j.1538-7305.1972.tb02682.xhttp://dx.doi.org/10.1002/j.1538-7305.1972.tb02682.x
OLSHANSKY R. Mode coupling effects in graded-index optical fibers[J]. Applied Optics, 1975, 14(4): 935-945. doi: 10.1364/ao.14.000935http://dx.doi.org/10.1364/ao.14.000935
程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20):2489-2500. doi: 10.37188/OPE.20223020.2489http://dx.doi.org/10.37188/OPE.20223020.2489
CHENG D Q, ZHAO J M, KOU Q Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20):2489-2500. (in Chinese). doi: 10.37188/OPE.20223020.2489http://dx.doi.org/10.37188/OPE.20223020.2489
胡建平, 郝梦云, 杜影, 等. 结构和纹理感知的Retinex融合红外与可见光图像[J]. 光学 精密工程, 2022, 30(24):3225-3238. doi: 10.37188/ope.20223024.3225http://dx.doi.org/10.37188/ope.20223024.3225
HU J P, HAO M Y, DU Y, et al. Fusion of infrared and visible images via structure and texture-aware retinex[J]. Opt. Precision Eng., 2022, 30(24):3225-3238. (in Chinese). doi: 10.37188/ope.20223024.3225http://dx.doi.org/10.37188/ope.20223024.3225
杨坚华, 张浩, 花海洋. 并行路径与强注意力机制遥感图像建筑物分割[J]. 光学 精密工程, 2023, 31(2): 234-245. doi: 10.37188/ope.20233102.0234http://dx.doi.org/10.37188/ope.20233102.0234
YANG J H, ZHANG H, HUA H Y. Parallel path and strong attention mechanism for building segmentation in remote sensing images[J]. Opt. Precision Eng., 2023, 31(2): 234-245.(in Chinese). doi: 10.37188/ope.20233102.0234http://dx.doi.org/10.37188/ope.20233102.0234
ABEDKARIMI S, GHAVAMI SABOURI S. Speckle analyzer: open-source package in MATLAB for finding metrics of physical quantities based on laser speckle pattern analyzing[J]. Applied Optics, 2021, 60(31): 9728-9735. doi: 10.1364/ao.438122http://dx.doi.org/10.1364/ao.438122
0
Views
1
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution