1.南京林业大学 机械电子工程学院,江苏 南京 210037
扫 描 看 全 文
YOU Jingjing, SHI Haofei, ZHANG Xianzhu. Research process on operation performances of parallel type six-axis acceleration sensing mechanisms. [J]. Optics and Precision Engineering 31(19):2867-2883(2023)
YOU Jingjing, SHI Haofei, ZHANG Xianzhu. Research process on operation performances of parallel type six-axis acceleration sensing mechanisms. [J]. Optics and Precision Engineering 31(19):2867-2883(2023) DOI: 10.37188/OPE.20233119.2867.
六维加速度感知在机器人、航空航天、超精密加工等领域均具有迫切的应用需求,已成为高端装备向“超精尖”发展的一项核心技术。并联式六维加速度传感器具有结构紧凑、动力学解耦精度高等突出优势,其测量性能与感知机构的操作性能有关。从工作机理的角度,阐述了并联式六维加速度感知机构与并联机器人、并联式六维力感知机构之间的差异。从数学和力学的角度,系统阐释了并联式六维加速度感知机构的静刚度、奇异性、基频共振和故障修复四项操作性能的表征和优化方法,并剖析了现有方法尚不具备自适应性的原因。接着,阐明六维加速度标定平台的必要性和基本要求,并分析了四种原理方案的优缺点。最后,指出挖掘感知机构“性能-结构-激励”三者之间的内在联系,并突破几何/拓扑结构的重构、标定平台的设计和优化这些关键问题,有助于充分发挥并联式六维加速度感知机构的性能优势。
Six-axis acceleration sensing has urgent application demands in the fields of robotics, aerospace, and ultra-precision machining, having become the core technology in the development of cutting-edge high-end equipment. Parallel-type six-axis accelerometers offer the salient advantages of compact structures and high decoupling precisions, and their measurement performance relates to the operation performance of sensing mechanisms. First, from the perspective of working mechanisms, this paper clarifies five differences between parallel-type six-axis acceleration sensing mechanisms, parallel robots, and parallel-type six-axis force sensing mechanisms. From mathematical and mechanical perspectives, it then systematically describes the characterization and optimization methods for operation performance factors, including static stiffness, singularity, fundamental resonance, and fault restoration, and analyzes reasons for the non-adaptive nature of existing methods. Subsequently, the necessity and basic requirements of six-dimensional acceleration calibration platforms are elucidated, and the advantages and disadvantages of four principle schemes are analyzed. Finally, it is concluded that to fully leverage the performance advantages of parallel-type six-axis acceleration sensing mechanisms, it is necessary to further address key technical problems by exploring internal performance relationships, structures, and excitations; reconfiguring geometric and topological structures; and designing and optimizing calibration platforms.
六维加速度传感器并联机构静刚度奇异性基频共振故障修复
six-axis accelerometerparallel mechanismstatic stiffnesssingularityfundamental resonancefault restoration
余龙焕, 邱志成, 张宪民. 基于加速度反馈的平面3-RRR柔性并联机器人自激振动控制[J]. 机械工程学报, 2019, 55(21): 40-50.
YU L H, QIU ZH CH, ZHANG X M. Self-excited vibration control of the planar 3-RRR flexible parallel manipulator based on acceleration feedback[J]. Journal of Mechanical Engineering, 2019, 55(21): 40-50.(in Chinese)
WAHLSTRÖM J, SKOG I. Fifteen years of progress at zero velocity: a review[J]. IEEE Sensors Journal, 2021, 21(2): 1139-1151. doi: 10.1109/jsen.2020.3018880http://dx.doi.org/10.1109/jsen.2020.3018880
尤晶晶, 李成刚, 左飞尧, 等. 六维加速度传感器的研究现状及发展趋势[J]. 振动与冲击, 2015, 34(11): 150-159, 172. doi: 10.13465/j.cnki.jvs.2015.11.027http://dx.doi.org/10.13465/j.cnki.jvs.2015.11.027
YOU J J, LI CH G, ZUO F Y, et al. Current studying status and developing trend of six-axis accelerometers[J]. Journal of Vibration and Shock, 2015, 34(11): 150-159, 172.(in Chinese). doi: 10.13465/j.cnki.jvs.2015.11.027http://dx.doi.org/10.13465/j.cnki.jvs.2015.11.027
ZHANG D Z, LIU J, QIN L, et al. Multiparameter modeling of piezoelectric six-degree-of-freedom accelerometer about sensitivity characteristics[J]. IEEE Sensors Journal, 2020, 20(13): 7129-7137. doi: 10.1109/jsen.2020.2966013http://dx.doi.org/10.1109/jsen.2020.2966013
程向红, 赵莹, 田芸. 一种自适应H∞滤波的运动学约束惯性导航方法[J]. 中国惯性技术学报, 2019, 27(3): 295-300.
CHENG X H, ZHAO Y, TIAN Y. An adaptive H∞ filtering approach for inertial navigation with motion constrained[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 295-300. (in Chinese)
SHEN X R, ZHANG H, XU Y, et al. Observation of alpha-stable noise in the laser gyroscope data[J]. IEEE Sensors Journal, 2016, 16(7): 1998-2003. doi: 10.1109/jsen.2015.2506120http://dx.doi.org/10.1109/jsen.2015.2506120
YANG P F, CHEN Y, CHEN Y L, et al. Gyro-free inertial measurement unit with unfettered accelerometer array distribution and for the object with position change in center of gravity[J]. IEEE Sensors Journal, 2021, 21(7): 9423-9435. doi: 10.1109/jsen.2021.3054381http://dx.doi.org/10.1109/jsen.2021.3054381
WU Qi,LI K,SONG T. The calibration for inner and outer lever-arm errors based on velocity differences of two RINSs[J]. Mechanical Systems and Signal Processing, 2021, 160: 107868. doi: 10.1016/j.ymssp.2021.107868http://dx.doi.org/10.1016/j.ymssp.2021.107868
CHAPSKY V, PORTMAN V T, SANDLER B Z. Single-mass 6-DOF isotropic accelerometer with segmented PSD sensors[J]. Sensors and Actuators A: Physical, 2007, 135(2): 558-569. doi: 10.1016/j.sna.2006.10.024http://dx.doi.org/10.1016/j.sna.2006.10.024
PORTMAN V T, CHAPSKY V S, SHNEOR Y. Evaluation and optimization of dynamic stiffness values of the PKMs: Collinear stiffness value approach[J]. Mechanism and Machine Theory, 2014, 74: 216-244. doi: 10.1016/j.mechmachtheory.2013.12.009http://dx.doi.org/10.1016/j.mechmachtheory.2013.12.009
尤晶晶, 李成刚, 吴洪涛. 并联式六维加速度传感器的哈密顿动力学研究[J]. 机械工程学报, 2012, 48(15): 9-17. doi: 10.3901/jme.2012.15.009http://dx.doi.org/10.3901/jme.2012.15.009
YOU J J, LI CH G, WU H T. Research on Hamiltonian dynamics of parallel type six-axis accelerometer[J]. Journal of Mechanical Engineering, 2012, 48(15): 9-17. (in Chinese). doi: 10.3901/jme.2012.15.009http://dx.doi.org/10.3901/jme.2012.15.009
XIAO Q J, CUI F, LUO Z H. System-level simulation and experiment for levitation control of micromachined electrostatically suspended accelerometer[J].Microsystem Technologies, 2018, 24(12): 4895-4907. doi: 10.1007/s00542-018-3906-2http://dx.doi.org/10.1007/s00542-018-3906-2
尤晶晶, 李成刚, 吴洪涛, 等. 预紧式并联六维加速度传感器的解耦算法研究[J]. 仪器仪表学报, 2017, 38(5): 1216-1225. doi: 10.3969/j.issn.0254-3087.2017.05.021http://dx.doi.org/10.3969/j.issn.0254-3087.2017.05.021
YOU J J, LI C G, WU H T, et al. Research on the decoupling algorithm of pre-stressedparallel six-axis accelerometer[J]. Chinese Journal of Scientific Instrument, 2017, 38(5): 1216-1225. (in Chinese). doi: 10.3969/j.issn.0254-3087.2017.05.021http://dx.doi.org/10.3969/j.issn.0254-3087.2017.05.021
LIU Y P, WANG X, YOU J J, et al. Ocean wave buoy based on parallel six-dimensional accelerometer[J]. IEEE Access, 2020, 8: 29627-29638. doi: 10.1109/access.2020.2971711http://dx.doi.org/10.1109/access.2020.2971711
YOU J, XI F, SHEN H, et al. A novel Stewart-type parallel mechanism with topological reconfiguration: design, kinematics and stiffness evaluation[J]. Mechanism and Machine Theory, 2021, 162: 104329. doi: 10.1016/j.mechmachtheory.2021.104329http://dx.doi.org/10.1016/j.mechmachtheory.2021.104329
WU X, WANG K, WANG Y, et al. Kinematic design and analysis of a 6-DOF spatial five-Bar linkage[J]. Mechanism and Machine Theory, 2021, 158: 104227. doi: 10.1016/j.mechmachtheory.2020.104227http://dx.doi.org/10.1016/j.mechmachtheory.2020.104227
姚建涛, 阮豪奇, 蔡大军, 等. 冗余正交式六维力感知机构性能分析与实验研究[J]. 仪器仪表学报, 2020, 41(1): 162-169. doi: 10.19650/j.cnki.cjsi.J1905831http://dx.doi.org/10.19650/j.cnki.cjsi.J1905831
YAO J T, RUAN H Q, CAI D J, et al. Performance analysis and experimental study of redundant orthogonal six-axis force sensing mechanism[J]. Chinese Journal of Scientific Instrument, 2020, 41(1): 162-169.(in Chinese). doi: 10.19650/j.cnki.cjsi.J1905831http://dx.doi.org/10.19650/j.cnki.cjsi.J1905831
MCCANN C, PATEL V, DOLLAR A. The Stewart hand: a highly dexterous, six-degrees-of-freedom manipulator based on the Stewart-Gough platform[J]. IEEE Robotics & Automation Magazine, 2021, 28(2): 23-36. doi: 10.1109/mra.2021.3064750http://dx.doi.org/10.1109/mra.2021.3064750
SUN Y J, LIU Y W, ZOU T, et al. Design and optimization of a novel six-axis force/torque sensor for space robot[J]. Measurement, 2015, 65: 135-148. doi: 10.1016/j.measurement.2015.01.005http://dx.doi.org/10.1016/j.measurement.2015.01.005
YOU J J, WANG L K, XI F F, et al. Decoupling algorithm and maximum operation frequency of a novel parallel type six-axis accelerometer[J]. IEEE Sensors Journal, 2020, 20(21): 12637-12651. doi: 10.1109/jsen.2020.3001250http://dx.doi.org/10.1109/jsen.2020.3001250
尤晶晶, 王林康, 刘云平, 等. 基于并联机构的六维加速度传感器的反向动力学[J]. 机械工程学报, 2022, 58(6): 10-25. doi: 10.3901/jme.2022.06.010http://dx.doi.org/10.3901/jme.2022.06.010
YOU J J, WANG L K, LIU Y P, et al. Inverse dynamics of six-axis acceleration sensor based on parallel mechanism[J]. Journal of Mechanical Engineering, 2022, 58(6): 10-25.(in Chinese). doi: 10.3901/jme.2022.06.010http://dx.doi.org/10.3901/jme.2022.06.010
TIAN H B, MA H W, XIA J, et al. Stiffness analysis of a metamorphic parallel mechanism with three configurations[J]. Mechanism and Machine Theory, 2019, 142: 103595. doi: 10.1016/j.mechmachtheory.2019.103595http://dx.doi.org/10.1016/j.mechmachtheory.2019.103595
EL-KHASAWNEH B S, FERREIRA P M. Computation of stiffness and stiffness bounds for parallel link manipulators[J]. International Journal of Machine Tools and Manufacture, 1999, 39(2): 321-342. doi: 10.1016/s0890-6955(98)00039-xhttp://dx.doi.org/10.1016/s0890-6955(98)00039-x
GOSSELIN C, SCHREIBER L T. Redundancy in parallel mechanisms: a review[J]. Applied Mechanics Reviews, 2018, 70(1): 010802. doi: 10.1115/1.4038931http://dx.doi.org/10.1115/1.4038931
LUCES M, MILLS J K, BENHABIB B. A review of redundant parallel kinematic mechanisms[J].Journal of Intelligent & Robotic Systems, 2017, 86(2): 175-198. doi: 10.1007/s10846-016-0430-4http://dx.doi.org/10.1007/s10846-016-0430-4
WANG L K, YOU J J, YANG X L, et al. Forward and inverse dynamics of a six-axis accelerometer based on a parallel mechanism[J]. Sensors, 2021, 21(1): 233. doi: 10.3390/s21010233http://dx.doi.org/10.3390/s21010233
李瑞琴, 亢书华, 张启升, 等. 冗余驱动并联机构的性能特征及应用研究进展[J]. 中北大学学报(自然科学版), 2021, 42(5): 385-394, 407.
LI R Q, KANG SH H, ZHANG Q SH, et al. Research process on performance characteristics and application of redundantly actuated parallel mechanism[J]. Journal of North University of China (Natural Science Edition), 2021, 42(5): 385-394, 407. (in Chinese)
BARON N, PHILIPPIDES A, ROJAS N. On the false positives and false negatives of the Jacobian matrix in kinematically redundant parallel mechanisms[J]. IEEE Transactions on Robotics, 2020, 36(3): 951-958. doi: 10.1109/tro.2020.2966401http://dx.doi.org/10.1109/tro.2020.2966401
LI B K, WANG K, HAN Y G, et al. Singularity property and singularity-free path planning of the Gough-Stewart parallel mechanism[J]. International Journal of Advanced Robotic Systems, 2017, 14(6): 172988141773497. doi: 10.1177/1729881417734971http://dx.doi.org/10.1177/1729881417734971
WANG J S, LIU X J, WU C. Optimal design of a new spatial 3-DOF parallel robot with respect to a frame-free index[J].Science in China Series E: Technological Sciences, 2009, 52(4): 986-999. doi: 10.1007/s11431-008-0305-4http://dx.doi.org/10.1007/s11431-008-0305-4
LACOMBE J, GOSSELIN C. Singularity analysis of a kinematically redundant (6+2)-DOF parallel mechanism for zero-torsion configurations[J]. Mechanism and Machine Theory, 2022, 170: 104682. doi: 10.1016/j.mechmachtheory.2021.104682http://dx.doi.org/10.1016/j.mechmachtheory.2021.104682
KARIMI A, MASOULEH M T, CARDOU P. Avoiding the singularities of 3-RPR parallel mechanisms via dimensional synthesis and self-reconfigurability[J]. Mechanism and Machine Theory, 2016, 99: 189-206. doi: 10.1016/j.mechmachtheory.2016.01.006http://dx.doi.org/10.1016/j.mechmachtheory.2016.01.006
GHEMARI Z, SALAH S, BOURENANE R. Resonance effect decrease and accuracy increase of piezoelectric accelerometer measurement by appropriate choice of frequency range[J]. Shock and Vibration, 2018, 2018: 1-8. doi: 10.1155/2018/5370438http://dx.doi.org/10.1155/2018/5370438
王林康, 尤晶晶, 李成刚, 等. Stewart衍生型六维加速度传感器的工作频带研究[J]. 振动、测试与诊断, 2021, 41(4): 701-709, 830. doi: 10.16450/j.cnki.issn.1004-6801.2021.04.010http://dx.doi.org/10.16450/j.cnki.issn.1004-6801.2021.04.010
WANG L K, YOU J J, LI CH G, et al. Study on working frequency band of Stewart derived six-axis acceleration sensor[J]. Journal of Vibration,Measurement & Diagnosis, 2021, 41(4): 701-709, 830. (in Chinese). doi: 10.16450/j.cnki.issn.1004-6801.2021.04.010http://dx.doi.org/10.16450/j.cnki.issn.1004-6801.2021.04.010
ZHANG D Z, JING J M, QIN L, et al. Analytical mathematical model of piezoelectric 6-D accelerometer about amplitude-frequency characteristics[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. doi: 10.1109/tim.2021.3137543http://dx.doi.org/10.1109/tim.2021.3137543
JIANG H Z, HE J F, TONG Z Z. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator[J]. Mechanism and Machine Theory, 2010, 45(5): 722-739. doi: 10.1016/j.mechmachtheory.2009.12.003http://dx.doi.org/10.1016/j.mechmachtheory.2009.12.003
王伟, 谢海波, 傅新, 等. 一种基于固有频率分析的液压6自由度并联机构参数优化方法[J]. 机械工程学报, 2006, 42(3): 77-82. doi: 10.3321/j.issn:0577-6686.2006.03.013http://dx.doi.org/10.3321/j.issn:0577-6686.2006.03.013
WANG W, XIE H B, FU X, et al. Optimal method of structural parameters for hydraulic 6-dof parallel platform based on natural frequency[J]. Chinese Journal of Mechanical Engineering, 2006, 42(3): 77-82. (in Chinese). doi: 10.3321/j.issn:0577-6686.2006.03.013http://dx.doi.org/10.3321/j.issn:0577-6686.2006.03.013
尤晶晶, 符周舟, 陈华鑫, 等. Stewart型六维加速度传感器的双支链故障自修复[J]. 压电与声光, 2021, 43(5): 715-719.
YOU J J, FU ZH ZH, CHEN H X, et al. Fault self-restoration for double branches of Stewart-type six-axis accelerometers[J]. Piezoelectrics & Acoustooptics, 2021, 43(5): 715-719. (in Chinese)
YI Y, MCINROY J E, CHEN Y X. Fault tolerance of parallel manipulators using task space and kinematic redundancy[J]. IEEE Transactions on Robotics, 2006, 22(5): 1017-1021. doi: 10.1109/tro.2006.878973http://dx.doi.org/10.1109/tro.2006.878973
ISAKSSON M, MARLOW K, MACIEJEWSKI A, et al. Novel fault-tolerance indices for redundantly actuated parallel robots[J]. Journal of Mechanical Design, 2017, 139(4): 042301. doi: 10.1115/1.4035587http://dx.doi.org/10.1115/1.4035587
NOTASH L, HUANG L. On the design of fault tolerant parallel manipulators[J]. Mechanism and Machine Theory, 2003, 38(1): 85-101. doi: 10.1016/s0094-114x(02)00067-8http://dx.doi.org/10.1016/s0094-114x(02)00067-8
姚建涛, 崔朋肖, 朱佳龙, 等. 预紧式并联六维力传感器容错测量机理与标定测试研究[J]. 机械工程学报, 2016, 52(8): 58-66. doi: 10.3901/jme.2016.08.058http://dx.doi.org/10.3901/jme.2016.08.058
YAO J T, CUI P X, ZHU J L, et al. Fault-tolerant measurement mechanism and calibration experimental study of pre-stressed parallel six-axis force sensor[J]. Journal of Mechanical Engineering, 2016, 52(8): 58-66. (in Chinese). doi: 10.3901/jme.2016.08.058http://dx.doi.org/10.3901/jme.2016.08.058
LI C G, WANG Y, CHEN J, et al. Fault diagnosis in a gyroscope-based six-axis accelerometer[J]. Transactions of FAMENA, 2018, 42(3): 103-114. doi: 10.21278/tof.42307http://dx.doi.org/10.21278/tof.42307
DU C, TANG J, YU C, et al. Isotropy analysis of parallel six-axis accelerometer on circular hyperboloids[J]. International Journal of Circuits, Systems and Signal Processing, 2020, 14: 222-231. doi: 10.46300/9106.2020.14.33http://dx.doi.org/10.46300/9106.2020.14.33
ZHANG D Z, LI M, QIN L, et al. Analytical modeling of piezoelectric 6-degree-of-freedom accelerometer about cross-coupling degree[J]. Measurement, 2021, 181: 109630. doi: 10.1016/j.measurement.2021.109630http://dx.doi.org/10.1016/j.measurement.2021.109630
孔永芳, 黄海, 李琪. 基于Stewart平台的有效载荷低阶模态振动抑制[J]. 光学 精密工程, 2020, 28(11): 2507-2516. doi: 10.37188/OPE.20202811.2507http://dx.doi.org/10.37188/OPE.20202811.2507
KONG Y F, HUANG H, LI Q. Vibration suppression for payload low-order modes using a Stewart platform[J]. Opt. Precision Eng., 2020, 28(11): 2507-2516. (in Chinese). doi: 10.37188/OPE.20202811.2507http://dx.doi.org/10.37188/OPE.20202811.2507
邱志成, 何成虎. 三耦合柔性梁振动的视觉检测与H∞控制[J]. 光学 精密工程, 2022, 30(24): 3168-3177. doi: 10.37188/ope.20223024.3168http://dx.doi.org/10.37188/ope.20223024.3168
QIU ZH CH, HE CH H. Visual detection and H∞ vibration control of three coupled flexible beams[J]. Opt. Precision Eng., 2022, 30(24): 3168-3177. (in Chinese). doi: 10.37188/ope.20223024.3168http://dx.doi.org/10.37188/ope.20223024.3168
SCHOPP P, GRAF H, BURGARD W, et al. Self-calibration of accelerometer arrays[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(8): 1913-1925. doi: 10.1109/tim.2016.2549758http://dx.doi.org/10.1109/tim.2016.2549758
李峰, 万秋华, 刘萌萌, 等. 低轨光学卫星同轨立体成像姿态规划与控制方法[J]. 光学 精密工程, 2022, 30(14): 1682-1693. doi: 10.37188/OPE.20223014.1682http://dx.doi.org/10.37188/OPE.20223014.1682
LI F, WAN Q H, LIU M M, et al. Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging[J]. Opt. Precision Eng., 2022, 30(14): 1682-1693.(in Chinese). doi: 10.37188/OPE.20223014.1682http://dx.doi.org/10.37188/OPE.20223014.1682
丁冬生. 六维加速度传感器的结构与标定研究[D]. 秦皇岛: 燕山大学,2010 .
DING D SH. Research on Structure and Calibration of Six-axis Acceleration Sensor[D]. Qinhuangdao: Yanshan University,2010. (in Chinese)
ZHU H, HE S, XU Z B, et al. Iterative feedback control based on frequency response model for a six-degree-of-freedom micro-vibration platform[J]. Journal of Vibration and Control, 2022, 28(13/14): 1727-1738. doi: 10.1177/1077546321997310http://dx.doi.org/10.1177/1077546321997310
史浩飞, 尤晶晶, 王林康, 等. 六维加速度传感器标定平台的设计与仿真研究[J]. 传感器与微系统, 2023, 42(1): 50-54.
SHI H F, YOU J J, WANG L K, et al. Design and simulation study of calibration platform for six-axis acceleration sensor[J]. Transducer and Microsystem Technologies, 2023, 42(1):50-54.(in Chinese)
MOOSAVIAN A, XI F. Holonomic under-actuation of parallel robots with topological reconfiguration[J]. Mechanism and Machine Theory, 2016, 96: 290-307. doi: 10.1016/j.mechmachtheory.2015.08.014http://dx.doi.org/10.1016/j.mechmachtheory.2015.08.014
ZHAO Y, XI F, TIAN Y, et al. Design of a planar hyper-redundant lockable mechanism for shape morphing using a centralized actuation method[J]. Mechanism and Machine Theory, 2021, 165: 104439. doi: 10.1016/j.mechmachtheory.2021.104439http://dx.doi.org/10.1016/j.mechmachtheory.2021.104439
LAMBERT P, CRUZ L D, BERGELES C. Mobility of overconstrained parallel mechanisms with reconfigurable end-effectors[J]. Mechanism and Machine Theory, 2022, 171: 104722. doi: 10.1016/j.mechmachtheory.2022.104722http://dx.doi.org/10.1016/j.mechmachtheory.2022.104722
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution