YE Xin,ZHENG Xiangyuan,LUO Zhitao.Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter[J].Optics and Precision Engineering,2023,31(20):2943-2950.
YE Xin,ZHENG Xiangyuan,LUO Zhitao.Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter[J].Optics and Precision Engineering,2023,31(20):2943-2950. DOI: 10.37188/OPE.20233120.2943.
Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter
In non-vacuum environments, radiation heat flux meters based on the electric substitution measurement principle face challenges such as intricate photoelectric inequality and hurdles in experimental testing and correction. To enhance the meter's accuracy, the photoelectric inequivalence source of the radiant heat flow meter was first analyzed. Subsequently, a thermal structure model for the radiant heat flow meter was developed by combining heat transfer theory with finite element analysis. The model's validity was then ascertained via a vacuum-to-air ratio experiment. Using this finite element thermal structure model, adjustments were made to address the inequivalence in the heat transfer process. The difference between the test results of vacuum-air responsiveness of the finite element model and experimental results is 1.7%, and the inequivalence of heat transfer is 0.28%. The photoelectric inequivalent correction coefficient is 1.002 35, and the relative uncertainty is 0.29%. Hence, this approach refines the radiant heat flux meter's correction system, improves its measurement accuracy, and furnishes valuable recommendations for further optimization and enhancement.
关键词
高精度电替代热流密度光电不等效性
Keywords
high precisionelectric substitutionheat fluxphotoelectric inequivalence
GAO Q H, QIE D F. The development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(3): 218-227.(in Chinese). doi: 10.12126/see.2020.03.002http://dx.doi.org/10.12126/see.2020.03.002
ZHOU K B, LIU N A, ZHANG L H, et al. Thermal radiation from fire whirls: revised solid flame model[J]. Fire Technology, 2014, 50(6): 1573-1587. doi: 10.1007/s10694-013-0360-7http://dx.doi.org/10.1007/s10694-013-0360-7
GIFFORD A R, HUBBLE D O, PULLINS C A, et al. Durable heat flux sensor for extreme temperature and heat flux environments[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(1): 69-76. doi: 10.2514/1.42298http://dx.doi.org/10.2514/1.42298
YE X, YI X L, LIN C, et al. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J]. Remote Sensing, 2020, 12(17): 2856. doi: 10.3390/rs12172856http://dx.doi.org/10.3390/rs12172856
THUILLIER G, ZHU P, SNOW M, et al. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J]. Light: Science & Applications, 2022, 11: 79. doi: 10.1038/s41377-022-00750-7http://dx.doi.org/10.1038/s41377-022-00750-7
YAN Z J, SHEN D, WU Y S, et al. Research on the base heating environment of a multi-nozzle heavy launch vehicle[J]. Missiles and Space Vehicles, 2021(1): 105-109, 114.(in Chinese)
YI X L, YANG Z L, YE X, et al. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Opt. Precision Eng., 2015, 23(10): 2733-2739.(in Chinese). doi: 10.3788/ope.20152310.2733http://dx.doi.org/10.3788/ope.20152310.2733
YI X L, FANG W, LIN Y D, et al. Experimental characteristics and measurement accuracy evaluation of space cryogenic absolute radiometric primary benchmark[J]. Opt. Precision Eng., 2021, 29(1): 10-20.(in Chinese). doi: 10.37188/OPE.20212901.0010http://dx.doi.org/10.37188/OPE.20212901.0010
WU D, WANG K, YE X, et al. Space cryogenic absolute radiometer[J]. Chinese Journal of Luminescence, 2019, 40(8): 1015-1021.(in Chinese). doi: 10.3788/fgxb20194008.1015http://dx.doi.org/10.3788/fgxb20194008.1015
GAO X, WANG K, FANG W. Optimization on the structure of the absorption cavity of solar irradiance absolute radiometer[J]. Opt. Precision Eng., 2018, 26(3): 624-631.(in Chinese). doi: 10.3788/ope.20182603.0624http://dx.doi.org/10.3788/ope.20182603.0624
TANG X, FANG W, WANG Y P. Effect and experiment analysis of first specular reflection error on absolute radiometers[J]. Chinese Journal of Lasers, 2016, 43(4): 0408003.(in Chinese). doi: 10.3788/cjl201643.0408003http://dx.doi.org/10.3788/cjl201643.0408003
ZHENG X Y, YE X, LUO Z T, et al. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022(4): 780-788.(in Chinese). doi: 10.37188/co.2022-0023http://dx.doi.org/10.37188/co.2022-0023