1.西北工业大学 宁波研究院 机电学院, 陕西 西安 710072
2.西北工业大学 空天微纳系统教育部重点实验室 陕西省微纳机电系统重点实验室, 陕西 西安 710072
扫 描 看 全 文
石颖超,张路明,陈飞等.数字微镜器件光谱成像技术进展[J].光学精密工程,2023,31(21):3096-3110.
SHI Yingchao,ZHANG Luming,CHEN Fei,et al.Progress in spectral imaging technology of digital micromirror devices[J].Optics and Precision Engineering,2023,31(21):3096-3110.
石颖超,张路明,陈飞等.数字微镜器件光谱成像技术进展[J].光学精密工程,2023,31(21):3096-3110. DOI: 10.37188/OPE.20233121.3096.
SHI Yingchao,ZHANG Luming,CHEN Fei,et al.Progress in spectral imaging technology of digital micromirror devices[J].Optics and Precision Engineering,2023,31(21):3096-3110. DOI: 10.37188/OPE.20233121.3096.
数字微镜器件(DMD)作为一种灵活、可编程、可独立寻址的空间光调制器件,广泛地应用于无掩膜光刻、光束整形、全息成像、共焦测量等领域。在光谱成像领域,DMD能够对成像视场进行精细可控的调制,从而代替传统的机械掩膜版和机械扫描结构。综述了近年来DMD在光谱成像领域的研究进展和应用情况,详细论述了基于DMD的编码孔径和推扫式光谱成像系统的光学系统基本结构及工作原理;梳理了基于DMD的光谱成像系统从哈达玛变换光谱成像到推扫式光谱成像的发展脉络;详细介绍了研究人员为克服DMD微镜的衍射以及像面倾斜等像差所做的相关研究工作。最后,总结了基于DMD的光谱成像技术的独特优势,讨论了基于DMD的光谱成像技术未来的发展方向与应用前景。
In recent years, digital micromirror device (DMD), as a flexible, programmable, and independently addressable spatial light modulation device, has been widely used in maskless lithography, beam shaping, holographic imaging, confocal measurement, and other fields. The flexible modulation mode also gives DMD unique advantages in spectral imaging. It can flexibly modulate the imaging field of view, replacing the traditional mechanical mask and scanning structure. In this study, DMD's research progress and application in spectral imaging in recent years was reviewed. The basic structure and working principle of the optical system of the aperture-coded and push-broom spectral imaging system based on DMD were discussed in detail and the development of a spectral imaging system based on DMD from Hadamard transform spectral imaging to push-broom spectral imaging was summarized. The relevant research work to overcome the DMD's diffraction owing to the micro-mirror and inclination of the image plane was introduced. Finally, The unique advantages of spectral imaging technology based on DMD was summarized and the future development direction and application prospect of spectral imaging technology based on DMD was discussed .
数字微镜器件光谱成像编码孔径哈达玛变换推扫式
digital micromirror devicespectral imagingcoded apertureHadamard transformpush-broom
GOETZ A F H. Three decades of hyperspectral remote sensing of the Earth: a personal view[J]. Remote Sensing of Environment, 2009, 113: S5-S16. doi: 10.1016/j.rse.2007.12.014http://dx.doi.org/10.1016/j.rse.2007.12.014
GREEN R O, EASTWOOD M L, SARTURE C M, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 1998, 65(3): 227-248. doi: 10.1016/s0034-4257(98)00064-9http://dx.doi.org/10.1016/s0034-4257(98)00064-9
BASEDOW R W, CARMER D C, ANDERSON M E. HYDICE system: implementation and performance[C].SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics. Proc SPIE 2480, Imaging Spectrometry, Orlando, FL, USA. 1995, 2480: 258-267. doi: 10.1117/12.210881http://dx.doi.org/10.1117/12.210881
FORD B K, DESCOUR M R, LYNCH R M. Large-image-format computed tomography imaging spectrometer for fluorescence microscopy[J]. Optics Express, 2001, 9(9): 444-453. doi: 10.1364/oe.9.000444http://dx.doi.org/10.1364/oe.9.000444
BEST F A, REVERCOMB H E, TOBIN D C, et al. Performance verification of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system[C]. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications, SPIE Proceedings. Goa, India. SPIE, 2006, 6405: 64050I. doi: 10.1117/12.698021http://dx.doi.org/10.1117/12.698021
DOUGLASS M. DMD reliability: a MEMS success story[C].SPIE Proceedings, Reliability, Testing, and Characterization of MEMS/MOEMS II. San Jose, CA. SPIE, 2003,498: 1-11. doi: 10.1117/12.478212http://dx.doi.org/10.1117/12.478212
周子逸, 董贤子, 郑美玲. 数字微镜无掩模光刻技术进展及应用[J]. 激光与光电子学进展, 2022, 59(9): 0922030. doi: 10.3788/LOP202259.0922030http://dx.doi.org/10.3788/LOP202259.0922030
ZHOU Z Y, DONG X Z, ZHENG M L. Evolution and application of digital micromirror device based maskless photolithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922030.(in Chinese). doi: 10.3788/LOP202259.0922030http://dx.doi.org/10.3788/LOP202259.0922030
陆锦洪, 谢向生, 张培晴, 等. 基于数字微镜器件亚微米制备技术研究[J]. 光子学报, 2010, 39(4):600-604. doi: 10.3788/gzxb20103904.0600http://dx.doi.org/10.3788/gzxb20103904.0600
LU J H, XIE X S, ZHANG P Q, et al. Submicron-sized optical fabrication with DMD based lithography[J]. Acta Photonica Sinica, 2010, 39(4):600-604.(in Chinese). doi: 10.3788/gzxb20103904.0600http://dx.doi.org/10.3788/gzxb20103904.0600
MILLS B, FEINAEUGLE M, SONES C L, et al. Sub-micron-scale femtosecond laser ablation using a digital micromirror device[J]. Journal of Micromechanics and Microengineering, 2013, 23(3): 035005. doi: 10.1088/0960-1317/23/3/035005http://dx.doi.org/10.1088/0960-1317/23/3/035005
CHENG J Y, GU C L, ZHANG D P, et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device[J]. Optics Letters, 2015, 40(21): 4875-4878. doi: 10.1364/ol.40.004875http://dx.doi.org/10.1364/ol.40.004875
REN Y X, LU R D, GONG L. Tailoring light with a digital micromirror device[J]. Annalen Der Physik, 2015, 527(7/8): 447-470. doi: 10.1002/andp.201500111http://dx.doi.org/10.1002/andp.201500111
SCHOLES S, KARA R, PINNELL J, et al. Structured light with digital micromirror devices: a guide to best practice[J]. Optical Engineering, 2019, 59(4): 041202. doi: 10.1117/1.OE.59.4.041202http://dx.doi.org/10.1117/1.OE.59.4.041202
ZHU L, CAO Z Z, FU S N, et al. Double-light-path multiplexing enabled light shaping efficiency enhancement for digital micromirror device[C].Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC). Beijing. Washington, D.C.: Optica Publishing Group, 2020. doi: 10.1364/acpc.2020.m4a.304http://dx.doi.org/10.1364/acpc.2020.m4a.304
GENG Q, GU C L, CHENG J Y, et al. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging[J]. Optica, 2017, 4(6): 674. doi: 10.1364/optica.4.000674http://dx.doi.org/10.1364/optica.4.000674
CHLIPALA M, KOZACKI T. Color reconstructions of real objects in DMD holographic display with LED illumination[C].Digital Holography and Three-Dimensional Imaging 2019. Bordeaux. Washington, D.C.: OSA, 2019. doi: 10.1364/dh.2019.m4a.5http://dx.doi.org/10.1364/dh.2019.m4a.5
张一, 余卿, 张昆, 等. 基于数字微镜器件的并行彩色共聚焦测量系统[J]. 光学 精密工程, 2020, 28(4):859-866.
ZHANG Y, YU Q, ZHANG K, et al. Parallel chromatic confocal measurement system based on digital micromirror device[J]. Opt. Precision Eng., 2020, 28(4):859-866. (in Chinese)
余卿, 叶瑞芳, 范伟. 基于数字微镜器件实现共焦测量的结构光参数[J]. 光学 精密工程, 2015, 23(5):1272-1278. doi: 10.3788/ope.20152305.1272http://dx.doi.org/10.3788/ope.20152305.1272
YU Q, YE R F, FAN W. Parameters of structured lights of DMD used in confocal measurement[J]. Opt. Precision Eng., 2015, 23(5):1272-1278.(in Chinese). doi: 10.3788/ope.20152305.1272http://dx.doi.org/10.3788/ope.20152305.1272
ARABLOUEI R, GOAN E, GENSEMER S, et al. Fast and robust pushbroom hyperspectral imaging via DMD-based scanning[C].SPIE Proceedings, Novel Optical Systems Design and Optimization XIX. San Diego, California, USA. SPIE, 2016, 9948. doi: 10.1117/12.2239107http://dx.doi.org/10.1117/12.2239107
张昊. 基于DMD的编码孔径成像光谱仪关键技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2016. doi: 10.16818/j.issn1001-5868.2016.05.029http://dx.doi.org/10.16818/j.issn1001-5868.2016.05.029
ZHANG H. Research on Key Technologies of Coded Aperture Imaging Spectrometer Based on DMD[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2016. (in Chinese). doi: 10.16818/j.issn1001-5868.2016.05.029http://dx.doi.org/10.16818/j.issn1001-5868.2016.05.029
TEXAS INSTRUMENTS. Application report DLPA022[EB/OL]. (2010-07)[2022-08-15]. https: //www.ti.com/lit/an/dlpa022/dlpa022.pdfhttps://www.ti.com/lit/an/dlpa022/dlpa022.pdf.
BANSAL V, SAGGAU P. Digital micromirror devices: principles and applications in imaging[J]. Cold Spring Harbor Protocols, 2013, 2013(5): 404-411. doi: 10.1101/pdb.top074302http://dx.doi.org/10.1101/pdb.top074302
姚雪峰, 高毅, 龙兵, 等. 数字微镜器件(DMD)杂散光特性测试方法及装置[J]. 中国光学, 2022, 15(2): 339-347. doi: 10.37188/CO.2021-0132http://dx.doi.org/10.37188/CO.2021-0132
YAO X F, GAO Y, LONG B, et al. Method and device for testing stray light characteristics of Digital Micro-mirror Device(DMD)[J]. Chinese Optics, 2022, 15(2): 339-347.(in Chinese). doi: 10.37188/CO.2021-0132http://dx.doi.org/10.37188/CO.2021-0132
TEXAS INSTRUMENTS. DLP [EB/OL]. (2022-09-28)[2022-09-28]. https://www.ti.com.cn/zh-cn/dlp-chip/overview.htmlhttps://www.ti.com.cn/zh-cn/dlp-chip/overview.html.
TEXAS INSTRUMENTS. Wavelength Transmissivity Considerations for DLP DMD Windows[EB/OL]. (2014-12-10)[2022-09-28]. https://www.ti.com/cn/lit/pdf/ZHCA625Chttps://www.ti.com/cn/lit/pdf/ZHCA625C.
WAGNER E P II, SMITH B W, MADDEN S, et al. Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulation[J]. Applied Spectroscopy, 1995, 49(11): 1715-1719. doi: 10.1366/0003702953965731http://dx.doi.org/10.1366/0003702953965731
DEVERSE R A, HAMMAKER R M, FATELEY W G. Realization of the hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer[J]. Applied Spectroscopy, 2000, 54(12): 1751-1758. doi: 10.1366/0003702001949078http://dx.doi.org/10.1366/0003702001949078
ROBERT M H, RICHARD A D, DANIEL J A, et al. Handbook of vibrational spectroscopy[M]. New York: John Wiley & Sons, Ltd,2006:1-8.
郭媛君. 基于DMD的微小型近红外光谱仪光谱信息处理及其应用软件[D]. 重庆: 重庆大学, 2011.
GUO Y J. Spectral Information Processing of Miniature Near Infrared Spectrometer Based on DMD and its Application Software[D]. Chongqing: Chongqing University, 2011. (in Chinese)
莫祥霞. 基于DMD的微小型近红外光谱仪系统研究[D]. 重庆: 重庆大学,2011.
MO X X. Research on Miniature Near Infrared Spectrometer System Based on DMD[D]. Chongqing: Chongqing University,2011. (in Chinese)
党博石, 刘华, 王晓朵, 等. 新型阿达玛变换光谱仪[J]. 光子学报, 2013, 42(8):902-907. doi: 10.3788/gzxb20134208.0902http://dx.doi.org/10.3788/gzxb20134208.0902
DANG B SH, LIU H, WANG X D, et al. A new kind of hadamard transform spectrometer[J]. Acta Photonica Sinica, 2013, 42(8):902-907.(in Chinese). doi: 10.3788/gzxb20134208.0902http://dx.doi.org/10.3788/gzxb20134208.0902
王晓朵. 基于DMD的哈达玛变换近红外光谱仪的研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.
WANG X D. Study on Hadamard Transform Near Infrared Spectrometer Based on DMD[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)
许家林. 基于DMD的阿达玛变换近红外光谱仪关键技术研究[D]. 北京: 中国科学院大学, 2017. doi: 10.1016/j.optcom.2016.07.086http://dx.doi.org/10.1016/j.optcom.2016.07.086
XU J L. Research on Key Technologies of Hadamard Transform Near Infrared Spectrometer Based on DMD[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese). doi: 10.1016/j.optcom.2016.07.086http://dx.doi.org/10.1016/j.optcom.2016.07.086
王莹, 刘华, 李金环, 等. 基于DMD的近红外光谱仪的研究[J]. 红外与激光工程, 2019, 48(6): 422-430. doi: 10.3788/irla201948.0620002http://dx.doi.org/10.3788/irla201948.0620002
WANG Y, LIU H, LI J H, et al. Research on near-infrared spectrometer based on DMD[J]. Infrared and Laser Engineering, 2019, 48(6): 422-430.(in Chinese). doi: 10.3788/irla201948.0620002http://dx.doi.org/10.3788/irla201948.0620002
KEARNEY K J, NINKOV Z. Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy[C].Optoelectronics and High-Power Lasers and Applications. Proc SPIE 3292, Spatial Light Modulators, San Jose, CA, USA. 1998, 3292: 81-92. doi: 10.1117/12.305493http://dx.doi.org/10.1117/12.305493
DEVERSE R A, HAMMAKER R M, FATELEY W G. Hadamard transform Raman imagery with a digital micro-mirror array[J]. Vibrational Spectroscopy, 1999, 19(2): 177-186. doi: 10.1016/s0924-2031(99)00007-7http://dx.doi.org/10.1016/s0924-2031(99)00007-7
FATELEY W G, HAMMAKER R M, DEVERSE R A. Modulations used to transmit information in spectrometry and imaging[J]. Journal of Molecular Structure, 2000, 550/551: 117-122. doi: 10.1016/s0022-2860(00)00516-0http://dx.doi.org/10.1016/s0022-2860(00)00516-0
KEARNEY K, CORIO M A, NINKOV Z. Imaging spectroscopy with digital micromirrors[C]. Proceeding of SPIE, 2000, 3965: 11-21. doi: 10.1117/12.385435http://dx.doi.org/10.1117/12.385435
WEHLBURG C M, WEHLBURG J C, GENTRY S M, et al. Optimization and characterization of an imaging Hadamard spectrometer[C].Aerospace/Defense Sensing, Simulation, and Controls. Proc SPIE 4381, Algorithms for Multispectral, Hyperspectral, and ImageryVIIUltraspectral, Orlando, FL, USA. 2001, 4381: 506-515. doi: 10.1117/12.437042http://dx.doi.org/10.1117/12.437042
SMITH M W, SMITH J L, TORRINGTON G K, et al. Theoretical description and numerical simulations of a simplified Hadamard transform imaging spectrometer[C].International Symposium on Optical Science and Technology. Proc SPIE 4816, Imaging Spectrometry VIII, Seattle, WA, USA. 2002, 4816: 372-380. doi: 10.1117/12.451698http://dx.doi.org/10.1117/12.451698
FATELEY W, HAMMAKER R M, DEVERSE R A, et al. The other spectroscopy: demonstration of a new de-dispersion imaging spectrograph[J]. Vibrational Spectroscopy, 2002, 29(1/2): 163-170. doi: 10.1016/s0924-2031(01)00205-3http://dx.doi.org/10.1016/s0924-2031(01)00205-3
CHRISTENSEN M P, EULISS G W, MCFADDEN M J, et al. ACTIVE-EYES: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging[J]. Applied Optics, 2002, 41(29): 6093. doi: 10.1364/ao.41.006093http://dx.doi.org/10.1364/ao.41.006093
VUJKOVIC-CVIJIN P, GOLDSTEIN N, FOX M J, et al. Adaptive spectral imager for space-based sensing[C]. SPIE Proceedings, Infrared Technology and Applications XXXII. Orlando (Kissimmee), FL. SPIE, 2006, 6206: 62060X. doi: 10.1117/12.669825http://dx.doi.org/10.1117/12.669825
GOLDSTEIN N, VUJKOVIC-CVIJIN P, FOX M, et al. DMD-based adaptive spectral imagers for hyperspectral imagery and direct detection of spectral signatures[C].SPIE Proceedings, Emerging Digital Micromirror Device Based Systems and Applications. San Jose, CA. SPIE, 2009, 7210: 721008. doi: 10.1117/12.809129http://dx.doi.org/10.1117/12.809129
GOLDSTEIN N, FOX M, ADLER-GOLDEN S, et al. Infrared adaptive spectral imagers for direct detection of spectral signatures and hyperspectral imagery[C].Emerging Digital Micromirror Device Based Systems and Applications V, SPIE Proceedings. San Francisco, California, USA. SPIE, 2013,8618. doi: 10.1117/12.2007029http://dx.doi.org/10.1117/12.2007029
GOLDSTEIN N, PETER BST, GROT J, et al. Portable, stand-off spectral imaging camera for detection of effluents and residues[C].Next-Generation Spectroscopic Technologies VIII, SPIE Proceedings. Baltimore, Maryland, USA. SPIE, 2015, 9482: 94820X. doi: 10.1117/12.2179045http://dx.doi.org/10.1117/12.2179045
孙鑫. 可见光多通道目标探测技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2011.
SUN X. Research on Visible Multi-channel Target Detection Technology[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2011. (in Chinese)
SUN X,HU B L, LI L B. An engineering prototype of Hadamard transform spectral imager based on Digital Micro-mirror Device[J]. Optics & Laser Technology, 2012, 44(1): 210-217. doi: 10.1016/j.optlastec.2011.06.020http://dx.doi.org/10.1016/j.optlastec.2011.06.020
LOVE S P. Programmable matched filter and Hadamard transform hyperspectral imagers based on micromirror arrays[C].SPIE Proceedings, Emerging Digital Micromirror Device Based Systems and Applications. San Jose, CA. SPIE, 2009, 7210. doi: 10.1117/12.808060http://dx.doi.org/10.1117/12.808060
LOVE S P, GRAFF D L. Full-frame programmable spectral filters based on micromirror arrays[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13(1): 011108. doi: 10.1117/1.jmm.13.1.011108http://dx.doi.org/10.1117/1.jmm.13.1.011108
GRAFF D L, LOVE S P. Adaptive hyperspectral imaging with a MEMS-based full-frame programmable spectral filter[C].SPIE Proceedings, Next-Generation Spectroscopic Technologies VII. Baltimore, Maryland, USA. SPIE, 2014, 9101: 910111. doi: 10.1117/12.2051436http://dx.doi.org/10.1117/12.2051436
GRAFF D L, LOVE S P. Toward real-time spectral imaging for chemical detection with a digital micromirror device-based programmable spectral filter[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2013, 13(1): 011111. doi: 10.1117/1.jmm.13.1.011111http://dx.doi.org/10.1117/1.jmm.13.1.011111
TAKHAR D, LASKA J N, WAKIN M B, et al. A new compressive imaging camera architecture using optical-domain compression[C].Proc SPIE 6065, Computational Imaging IV, 2006, 6065: 43-52. doi: 10.1117/12.659602http://dx.doi.org/10.1117/12.659602
DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. doi: 10.1109/msp.2007.914730http://dx.doi.org/10.1109/msp.2007.914730
LAM CHAN W, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105. doi: 10.1063/1.2989126http://dx.doi.org/10.1063/1.2989126
WU Y H, MIRZA I O, ARCE G R, et al. Demonstration of a DMD-based compressive sensing (CS) spectral imaging system[C].CLEO: 2011 - Laser Applications to Photonic Applications. Baltimore, Maryland. Washington, D.C.: OSA, 2011. doi: 10.1364/cleo_at.2011.atue2http://dx.doi.org/10.1364/cleo_at.2011.atue2
WU Y H, MIRZA I O, ARCE G R, et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system[J]. Optics Letters, 2011, 36(14): 2692-2694. doi: 10.1364/ol.36.002692http://dx.doi.org/10.1364/ol.36.002692
WU Y H, MIRZA I O, YE P, et al. Development of a DMD-based compressive sampling hyperspectral imaging (CS-HSI) system[C].SPIE Proceedings, Emerging Digital Micromirror Device Based Systems and Applications III. San Francisco, California. SPIE, 2011,7932: 79320I. doi: 10.1117/12.874069http://dx.doi.org/10.1117/12.874069
LIN X, WETZSTEIN G, LIU Y B, et al. Dual-coded compressive hyperspectral imaging[J]. Optics Letters, 2014, 39(7): 2044-2047. doi: 10.1364/ol.39.002044http://dx.doi.org/10.1364/ol.39.002044
XU C, XU T F, YAN G, et al. Super-resolution compressive spectral imaging via two-tone adaptive coding: publisher's note[J]. Photonics Research, 2020, 8(6): 892. doi: 10.1364/prj.395178http://dx.doi.org/10.1364/prj.395178
ZHOU J J, YANG Y, LI L, et al. Developing, integrating and validating a compressive hyperspectral video imager[C].Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX. April 27-May 8, 2020. Online Only, USA. SPIE, 2020, 11423: 114230V. doi: 10.1117/12.2560282http://dx.doi.org/10.1117/12.2560282
马翠. 基于数字微镜的编码成像光谱仪的研究[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2018.
MA C. Research on Coded Imaging Spectrometer Based on Digital Micromirror[D]. Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2018. (in Chinese)
WUTTIG A, RIESENBERG R. Sensitive Hadamard transform imaging spectrometer with a simple MEMS[C]. SPIE Proceedings, Sensors, Systems, and Next-Generation Satellites VI. Crete, Greece. SPIE, 2003, 4881. doi: 10.1117/12.463016http://dx.doi.org/10.1117/12.463016
BEDNARKIEWICZ A, WHELAN M P. Microscopic fluorescence lifetime and hyperspectral imaging with digital micromirror illuminator[C].Confocal, Multiphoton, and Nonlinear Microscopic Imaging III. Munich, Germany. Washington, D.C.: OSA, 2007, 6630. doi: 10.1364/ecbo.2007.6630_9http://dx.doi.org/10.1364/ecbo.2007.6630_9
HSU Y J, CHEN C C, HUANG C H, et al. Line-scanning hyperspectral imaging based on structured illumination optical sectioning[J]. Biomedical Optics Express, 2017, 8(6): 3005-3016. doi: 10.1364/boe.8.003005http://dx.doi.org/10.1364/boe.8.003005
DONG X, XIAO X C, PAN Y N, et al. DMD-based hyperspectral imaging system with tunable spatial and spectral resolution[J]. Optics Express, 2019, 27(12): 16995-17006. doi: 10.1364/oe.27.016995http://dx.doi.org/10.1364/oe.27.016995
DONG X, TONG G, SONG X K, et al. DMD-based hyperspectral microscopy with flexible multiline parallel scanning[J]. Microsystems & Nanoengineering, 2021, 7: 68. doi: 10.1038/s41378-021-00299-2http://dx.doi.org/10.1038/s41378-021-00299-2
QI Y, HENG L Z, LI L, et al. Hadamard transform-based hyperspectral imaging using a single-pixel detector[J]. Optics Express, 2020, 28(11): 16126. doi: 10.1364/oe.390490http://dx.doi.org/10.1364/oe.390490
BARNARD K J, BOREMAN G D, PAPE D R. Crosstalk model of a deformable-mirror-based infrared scene projector[J]. Optical Engineering, 1994, 33(1): 140-149. doi: 10.1117/12.153159http://dx.doi.org/10.1117/12.153159
MEURET Y, DE VISSCHERE P. Contrast-improving methods for digital micromirror device projectors[J]. Optical Engineering, 2003, 42(3): 840-845. doi: 10.1117/1.1542594http://dx.doi.org/10.1117/1.1542594
RENTZ DUPUIS J, MANSUR D J. Considerations for DMDs operating in the infrared[C].SPIE Proceedings, Emerging Digital Micromirror Device Based Systems and Applications IV. San Francisco, California, USA. SPIE, 2012. doi: 10.1117/12.905667http://dx.doi.org/10.1117/12.905667
陈笑, 颜玢玢, 宋菲君, 等. DMD光栅的衍射特性及其在可调谐激光中的应用[J]. 光学学报, 2012, 32(7): 0705003. doi: 10.3788/aos201232.0705003http://dx.doi.org/10.3788/aos201232.0705003
CHEN X, YAN F F, SONG F J, et al. Diffractive properties of DMD gratings and its new application in tunable fiber lasers[J]. Acta Optica Sinica, 2012, 32(7): 0705003.(in Chinese). doi: 10.3788/aos201232.0705003http://dx.doi.org/10.3788/aos201232.0705003
XIONG Z, LIU H, LU Z W. Diffraction analysis of digital micromirror device at coherent illumination[C].2013 CIOMP-OSA Summer Session on Optical Engineering, Design and Manufacturing. Changchun. Washington, D.C.: OSA, 2013. doi: 10.1364/sumsession.2013.th14http://dx.doi.org/10.1364/sumsession.2013.th14
XIONG Z, LIU H, TAN X Q, et al. Diffraction analysis of digital micromirror device in maskless photolithography system[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13(4): 043016. doi: 10.1117/1.jmm.13.4.043016http://dx.doi.org/10.1117/1.jmm.13.4.043016
HAN Q, ZHANG J Z, WANG J, et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared[J]. Applied Optics, 2016, 55(28): 8016-8021. doi: 10.1364/ao.55.008016http://dx.doi.org/10.1364/ao.55.008016
DONG X, SHI Y C, XIAO X C, et al. Non-paraxial diffraction analysis for developing DMD-based optical systems[J]. Optics Letters, 2022, 47(18): 4758-4761. doi: 10.1364/ol.469033http://dx.doi.org/10.1364/ol.469033
LIU J D, ZAOUTER C, LIU X L, et al. Coded-aperture broadband light field imaging using digital micromirror devices[C].Emerging Digital Micromirror Device Based Systems and Applications XIII. March 6-12, 2021. Online Only, USA. SPIE, 2021.
张卫平, 何小荣. 光栅的汇合光谱特性与双光栅成象效应[J]. 中国科学G辑, 2006, 36(5):556-560.
ZHANG W P, HE X R. Confluence spectral characteristics of gratings and imaging effect of double gratings[J]. Science in China (Series G), 2006, 36(5):556-560.(in Chinese)
武鑫. 基于DMD的自适应分类光谱成像技术光学系统设计研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.
WU X. Research on Optical System Design of Adaptive Classified Spectral Imaging Technology Based on DMD[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2020. (in Chinese)
王月旗. 基于DMD的编码孔径光谱成像光学系统设计[D]. 长春: 长春理工大学, 2020.
WANG Y Q. Design of Coded Aperture Spectral Imaging Optical System Based on DMD[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)
赵雨时, 贺文俊, 刘智颖, 等. 光谱维编码中红外光谱成像系统的光学设计[J]. 红外与激光工程, 2021, 50(12): 3788/IRLA20210700.
ZHAO Y SH, HE W J, LIU ZH Y, et al. Optical design of infrared spectral imaging system in spectral dimension coding[J]. Infrared and Laser Engineering, 2021, 50(12): 3788/IRLA20210700.(in Chinese)
杨莹, 胡炳樑, 李立波, 等. Hadamard编码红外光谱成像系统设计[J]. 光学 精密工程, 2022, 30(6): 641-650. doi: 10.37188/OPE.20223006.0641http://dx.doi.org/10.37188/OPE.20223006.0641
YANG Y, HU B L, LI L B, et al. Design of MWIR hadamard coded imaging spectrometer[J]. Opt. Precision Eng., 2022, 30(6): 641-650.(in Chinese). doi: 10.37188/OPE.20223006.0641http://dx.doi.org/10.37188/OPE.20223006.0641
0
Views
16
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution