1.大连理工大学 机械工程学院,辽宁 大连 116024
2.大连理工高邮研究院有限公司,江苏 高邮 225600
E-mail: 18437952875@163.com
扫 描 看 全 文
娄志峰,张汉平,周竞杰等.二维线性模组空间运动误差实时测量[J].光学精密工程,2023,31(21):3111-3124.
LOU Zhifeng,ZHANG Hanping,ZHOU Jingjie,et al.Real-time spatial error measurement of two-dimensional linear module[J].Optics and Precision Engineering,2023,31(21):3111-3124.
娄志峰,张汉平,周竞杰等.二维线性模组空间运动误差实时测量[J].光学精密工程,2023,31(21):3111-3124. DOI: 10.37188/OPE.20233121.3111.
LOU Zhifeng,ZHANG Hanping,ZHOU Jingjie,et al.Real-time spatial error measurement of two-dimensional linear module[J].Optics and Precision Engineering,2023,31(21):3111-3124. DOI: 10.37188/OPE.20233121.3111.
为实时检测二维线性模组的运动误差,搭建了误差实时测量系统。该系统由四自由度运动误差测量模块、滚动角误差测量模块和线性光栅尺组成,实现单轴六自由度运动误差测量。基于齐次坐标转换矩阵(Homogeneous Transformation Matrix,HTM)原理构建二维模组的空间误差模型,对功能点的实际空间位置进行表示;完成测量系统标定实验,并基于阿贝-布莱恩原则处理实验数据完成比对实验。最终,测量系统的定位误差、直线度误差和角度误差测量精度分别达到±1.2 μm,±1.3 μm和±1'',并根据空间误差模型分析二维线性模组,XZ,平面对角线位置的测量误差。结果表明,使用二维线性模组空间误差模型求解后,,XZ,平面对角线位置的测量误差由68 μm降至13 μm,证明采用该系统进行线性模组误差测量是有效的;此外,因为加载状态下二维线性模组各位置的运动误差会改变,为验证测量系统能够实时测量出线性模组的空间误差变化,在,Z,轴滑块上加装质量为2 kg的标准砝码进行对照实验。结果显示,在使用二维线性模组空间误差模型求解后,,XZ,平面对角线位置的测量误差由56 μm降至14 μm。
A real-time error measurement system was developed to measure the motion error of a two-dimensional linear module. The system consisted of a four-degree-of-freedom motion error measurement module (for measuring the horizontal straightness, vertical straightness, pitch angle, and yaw angle errors), roll angle error measurement module (for measuring the roll angle error), and linear grating ruler (for measuring the axial positioning error); thus, it measured six degrees of freedom motion errors in a single axis. The principle of the homogeneous transformation matrix (HTM), was used to construct a spatial error model for the two-dimensional module to represent the actual spatial positions of functional points. The calibration experiments of the measurement system were performed, and the experimental data were processed based on the Abbe-Bryan principle to complete the comparison experiment. Finally, the positioning, straightness, and measurement accuracies of angular errors reach ±1.2 μm, ±1.3 μm, and ±1'', respectively. The measurement error of the diagonal position in the ,XZ, plane of the two-dimensional linear module was analyzed based on the proposed spatial error model. The results indicate that the measurement error of the diagonal position in the ,XZ, plane decreases from 68 μm to 13 μm after using the two-dimensional linear module spatial error model. In addition, because the motion errors of the two-dimensional linear module at different positions changes under loading, a comparative experiment was conducted by adding a standard weight of 2 kg to the ,Z,-axis slider to verify the measurement system could capture real-time spatial error variations of the linear module. The results show that the measurement error of the diagonal position in the ,XZ, plane decreases from 56 μm to 14 μm after using the two-dimensional linear module spatial error model.
误差测量系统二维线性模组空间误差模型实时测量
error measurement systemtwo-dimensional linear modulespatial error modelreal-time measurement
王斐然, 廖有用, 罗均, 等. 二维直线运动平台几何误差建模与数字化分析[J]. 机械设计与制造, 2018(2): 160-163. doi: 10.3969/j.issn.1001-3997.2018.02.047http://dx.doi.org/10.3969/j.issn.1001-3997.2018.02.047
WANG F R, LIAO Y Y, LUO J, et al. Modeling and digital analysis of the geometric errors of two-dimensional linear motion stage[J]. Machinery Design & Manufacture, 2018(2): 160-163.(in Chinese). doi: 10.3969/j.issn.1001-3997.2018.02.047http://dx.doi.org/10.3969/j.issn.1001-3997.2018.02.047
杨滨赫, 蔡引娣, 文志祥, 等. 长距离激光测量中光束漂移的自动补偿[J]. 光学 精密工程, 2020, 28(11): 2393-2402. doi: 10.37188/OPE.20202811.2393http://dx.doi.org/10.37188/OPE.20202811.2393
YANG B H, CAI Y D, WEN ZH X, et al. Automatic compensation method for beam drift in long-distance laser measurement[J]. Opt. Precision Eng., 2020, 28(11): 2393-2402.(in Chinese). doi: 10.37188/OPE.20202811.2393http://dx.doi.org/10.37188/OPE.20202811.2393
范光照, 朱志良, 钟添东. 小型微/纳米级三坐标测量机的研制[J]. 纳米技术与精密工程, 2003, 1(1):17-23. doi: 10.3969/j.issn.1672-6030.2003.01.004http://dx.doi.org/10.3969/j.issn.1672-6030.2003.01.004
FAN G ZH, ZHU ZH L, ZHONG T D. Development of a small coordinate measuring machine with micro/nano-accuracy[J]. Nanotechnology and Precision Engineering, 2003, 1(1):17-23.(in Chinese). doi: 10.3969/j.issn.1672-6030.2003.01.004http://dx.doi.org/10.3969/j.issn.1672-6030.2003.01.004
赵东升, 张健, 贾敏强, 等. 测量数控机床定位误差的两种方法之比较[J]. 计量学报, 2019, 40(S1):33-35. doi: 10.3969/j.issn.1000-1158.2019.z1.07http://dx.doi.org/10.3969/j.issn.1000-1158.2019.z1.07
ZHAO D SH, ZHANG J, JIA M Q, et al. Comparison of two methods for measuring the error of CNC machine tool[J]. Acta Metrologica Sinica, 2019, 40(S1):33-35.(in Chinese). doi: 10.3969/j.issn.1000-1158.2019.z1.07http://dx.doi.org/10.3969/j.issn.1000-1158.2019.z1.07
李永祥, 焦万堂, 武文斌. 机床导轨误差对零件加工精度的影响[J]. 制造技术与机床, 2005(8): 82-85. doi: 10.3969/j.issn.1005-2402.2005.08.023http://dx.doi.org/10.3969/j.issn.1005-2402.2005.08.023
LI Y X, JIAO W T, WU W B. Influence of lathe guide errors on machining accuracy[J]. Manufacturing Technology & Machine Tool, 2005(8): 82-85.(in Chinese). doi: 10.3969/j.issn.1005-2402.2005.08.023http://dx.doi.org/10.3969/j.issn.1005-2402.2005.08.023
HUANG P S, LI Y. Laser measurement instrument for fast calibration of machine tools[C]. Proceedings of ASPE annual Meeting, 1996,14:644-647
郭俊康, 李鑫波, 李勰. 导轨五自由度运动误差的光学与倾角传感器组合测量方法[J]. 西安交通大学学报, 2021, 55(2):64-72. doi: 10.7652/xjtuxb202102008http://dx.doi.org/10.7652/xjtuxb202102008
GUO J K, LI X B, LI X. Five degrees of freedom simultaneous measurement of linear motion system by combination of optical with inclination sensors[J]. Journal of Xi'an Jiaotong University, 2021, 55(2):64-72.(in Chinese). doi: 10.7652/xjtuxb202102008http://dx.doi.org/10.7652/xjtuxb202102008
CHENG J, CHEN J F, CHENG Z, et al. Interferometer with six axes and 4 subdivisions: WO, WO/2013/013345[P].2013
CHANG D, HU P C, TAN J B. Fused-like angles: replacement for roll-pitch-yaw angles for a six-degree-of-freedom grating interferometer[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(12): 1677-1684. doi: 10.1631/fitee.2000432http://dx.doi.org/10.1631/fitee.2000432
ZHAO Y Q, FENG Q B, ZHANG B, et al. Influence of beam radii on a common-path compensation method for laser beam drifts in laser collimation systems[J]. Measurement Science and Technology, 2016, 27(8): 084013. doi: 10.1088/0957-0233/27/8/084013http://dx.doi.org/10.1088/0957-0233/27/8/084013
匡萃芳, 冯其波, 刘斌. 滚转角测量方法综述[J]. 光学技术, 2004, 30(6): 699-702. doi: 10.3321/j.issn:1002-1582.2004.06.010http://dx.doi.org/10.3321/j.issn:1002-1582.2004.06.010
KUANG C F, FENG Q B, LIU B. Survey of rolling angle measurement methods[J]. Optical Technique, 2004, 30(6): 699-702.(in Chinese). doi: 10.3321/j.issn:1002-1582.2004.06.010http://dx.doi.org/10.3321/j.issn:1002-1582.2004.06.010
CAI Y D, YANG B H, FAN K C. Robust roll angular error measurement system for precision machines[J]. Optics Express, 2019, 27(6): 8027. doi: 10.1364/oe.27.008027http://dx.doi.org/10.1364/oe.27.008027
FENG Q B, ZHANG B, CUI C X, et al. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide[J]. Optics Express, 2013, 21(22): 25805-25819. doi: 10.1364/oe.21.025805http://dx.doi.org/10.1364/oe.21.025805
张聪, 刘文正, 段发阶, 等. 长导轨五自由度测量中直线度精度提升方法与优化设计[J]. 光学 精密工程, 2022, 30(20):2467-2478. doi: 10.37188/OPE.20223020.2467http://dx.doi.org/10.37188/OPE.20223020.2467
ZHANG C, LIU W ZH, DUAN F J, et al. Accuracy improvement method and optimal design of straightness in five-degreee-of-freedom measurement of long guide[J]. Opt. Precision Eng., 2022, 30(20):2467-2478.(in Chinese). doi: 10.37188/OPE.20223020.2467http://dx.doi.org/10.37188/OPE.20223020.2467
张忠宁, 宋治崑, 范宇超, 等. 五自由度运动误差测量系统关键技术研究[J]. 计测技术, 2021, 41(3):39-45. doi: 10.11823/j.issn.1674-5795.2021.03.08http://dx.doi.org/10.11823/j.issn.1674-5795.2021.03.08
ZHANG ZH N, SONG ZH K, FAN Y CH, et al. Research on key technology of five-degree-of-freedom motion error measurement system[J]. Metrology & Measurement Technology, 2021, 41(3):39-45.(in Chinese). doi: 10.11823/j.issn.1674-5795.2021.03.08http://dx.doi.org/10.11823/j.issn.1674-5795.2021.03.08
JIN T, HAN M Y, LIU J L, et al. A heterodyne interferometer for simultaneous measurement of roll and straightness[J]. IEEE Access, 2019, 7: 133257-133264. doi: 10.1109/access.2019.2941078http://dx.doi.org/10.1109/access.2019.2941078
匡翠方, 冯其波, 张斌, 等. 一种新的滚转角测量方法[J]. 光电子·激光, 2006, 17(4):1085-1089.
KUANG C F, FENG Q B, ZHANG B, et al. A novel method for measuring roll[J]. Journal of Optoelectronics·Laser, 2006, 17(4):1085-1089. (in Chinese)
SHI K, SU J H, HOU W M. Roll angle measurement system based on differential plane mirror interferometer[J]. Optics Express, 2018, 26(16): 19826. doi: 10.1364/oe.26.019826http://dx.doi.org/10.1364/oe.26.019826
FAN K C, CHEN M J, HUANG W M. A six-degree-of-freedom measurement system for the motion accuracy of linear stages[J]. International Journal of Machine Tools and Manufacture, 1998, 38(3): 155-164. doi: 10.1016/s0890-6955(97)00055-2http://dx.doi.org/10.1016/s0890-6955(97)00055-2
FAN Y C, LOU Z F, HUANG Y B, et al. Self-compensation method for dual-beam roll angle measurement of linear stages[J]. Optics Express, 2021, 29(17): 26340. doi: 10.1364/oe.433387http://dx.doi.org/10.1364/oe.433387
粟时平, 李圣怡, 王贵林. 基于多体系统理论的数控机床空间误差建模[J]. 长沙电力学院学报(自然科学版), 2001(4): 75-78.
SU SH P, LI SH Y, WANG G L. Modeling of volumetric errors for NC machine tools based on multi-body system theories[J]. Journal of Changsha Electric Power University (Natural Science Edition), 2001(4): 75-78.(in Chinese)
赵壮, 娄志峰, 张忠宁, 等. 符合阿贝原则的数控机床几何误差建模[J]. 光学 精密工程, 2020, 28(4): 885-897.
ZHAO ZH, LOU ZH F, ZHANG ZH N, et al. Geometric error model of CNC machine tools based on Abbe principle[J]. Optics and Precision Engineering, 2020, 28(4): 885-897.(in Chinese)
HUANG Y B, FAN K C, SUN W, et al. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error[J]. Optics Express, 2018, 26(13): 17185-17198. doi: 10.1364/oe.26.017185http://dx.doi.org/10.1364/oe.26.017185
宋治崑. 导轨运动误差测量方法及装备空间误差分析[D]. 大连: 大连理工大学, 2022.
SONG ZH K. Measurement Method of Guide Rail Motion Error and Analysis of Equipment Space Error[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)
0
Views
15
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution