1.广东工业大学 材料与能源学院,广东 广州 510006
2.北京大学 东莞光电研究院,广东 东莞 523822
3.广东工业大学 信息与工程学院,广东 广州 510006
扫 描 看 全 文
周勇,王琦,高翔等.高功率蓝光半导体激光器巴条的封装技术研究[J].光学精密工程,2023,31(22):3237-3244.
ZHOU Yong,WANG Qi,GAO Xiang,et al.Research on packaging technology of high power blue semiconductor laser bar[J].Optics and Precision Engineering,2023,31(22):3237-3244.
周勇,王琦,高翔等.高功率蓝光半导体激光器巴条的封装技术研究[J].光学精密工程,2023,31(22):3237-3244. DOI: 10.37188/OPE.20233122.3237.
ZHOU Yong,WANG Qi,GAO Xiang,et al.Research on packaging technology of high power blue semiconductor laser bar[J].Optics and Precision Engineering,2023,31(22):3237-3244. DOI: 10.37188/OPE.20233122.3237.
为实现高功率的蓝光半导体激光输出,对蓝光巴条的封装技术进行了研究。利用金锡硬焊料封装了高功率氮化镓(GaN)蓝光半导体激光巴条,应用铜钨过渡热沉作为缓冲层抑制了铜热沉和GaN激光芯片之间封装残余应力,采用高精度贴片机将芯片共晶键合在铜钨过渡热沉上。贴片质量的好坏直接影响了器件的输出特性,所以重点分析了贴片机的焊接温度焊接压力、焊接时间对器件的影响。实验结果表明:当贴片机的焊接温度为320 ℃、焊接压力为0.5 N、焊接时间为40 s时,焊料层界面空洞最少,热阻最低为0.565 ℃/W,阈值电流最低为4.9 A,在注入电流30 A时,输出光功率最高为32.21 W,最高光电转换效率达到了23.3%。因此,在优化焊接温度、焊接压力、焊接时间后,利用金锡硬焊料将蓝光半导体激光芯片共晶键合在铜钨过渡热沉的技术方案是实现蓝光半导体激光巴条高功率工作的有效途径。
To achieve high-power blue semiconductor laser outputs, the packaging technology of blue light bars was studied herein. First, high-power gallium nitride (GaN) blue semiconductor laser bars were encapsulated using gold-tin hard solder. A copper-tungsten transition heat sink was used as a buffer layer to suppress the residual stress between the copper heat sink and GaN laser chips. The chips were eutectic bonded onto the copper-tungsten transition heat sink using a high-precision SMT machine. Because the quality of the SMD directly affects the output characteristics of the device, the focus was on analyzing the impact of the bonding temperature and pressure of the SMD machine on the device. The experimental results reveal that, when the bonding temperature of the mounter is 320 °C, bonding pressure is 0.5 N, and bonding time is 40 s, the solder layer interface cavity is the smallest, thermal resistance is the lowest (0.565 °C/W), and threshold current is also the lowest (4.9 A). When the injection current is 30 A, the maximum output optical power is 32.21 W, and the maximum solar-cell efficiency reaches 23.3%. Therefore, after optimizing the bonding temperature, bonding pressure, and bonding time, the technical solution of using gold-tin hard solder to eutectic bond blue semiconductor laser chips onto copper-tungsten transition heat sinks is an effective way to achieve high-power operation of blue semiconductor laser bars.
高功率激光器半导体激光器氮化镓蓝光巴条铜钨过渡热沉
high-power lasersemiconductor lasergallium nitrideblue lightBa Tiaocopper tungsten transition heat sink
NAKAMURA S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes[J]. Science, 1998, 281(5379): 955-961. doi: 10.1126/science.281.5379.956http://dx.doi.org/10.1126/science.281.5379.956
PONCE F A, BOUR D P. Nitride-based semiconductors for blue and green light-emitting devices[J]. Nature, 1997, 386(6623): 351-359. doi: 10.1038/386351a0http://dx.doi.org/10.1038/386351a0
NAKAMURA S, MUKAI T, SENOH M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Applied Physics Letters, 1994, 64(13): 1687-1689. doi: 10.1063/1.111832http://dx.doi.org/10.1063/1.111832
LI X, WANG Y, WANG Y, et al. Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber[J]. Optics & Laser Technology, 2013, 47: 144-147. doi: 10.1016/j.optlastec.2012.08.010http://dx.doi.org/10.1016/j.optlastec.2012.08.010
JrWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J]. Laser & Photonics Reviews, 2013, 7(6): 963-993. doi: 10.1002/lpor.201300048http://dx.doi.org/10.1002/lpor.201300048
冯勇, 张文喜, 伍洲, 等. 半导体激光器电流调制实现短相干光源[J]. 光学 精密工程, 2021, 29(6): 1321-1328. doi: 10.37188/ope.20212906.1321http://dx.doi.org/10.37188/ope.20212906.1321
FENG Y, ZHANG W X, WU Z, et al. Short coherent light source based on current modulation in semiconductor lasers[J]. Opt. Precision Eng., 2021, 29(6): 1321-1328.(in Chinese). doi: 10.37188/ope.20212906.1321http://dx.doi.org/10.37188/ope.20212906.1321
POURHASHEMI A, FARRELL R M, COHEN D A, et al. High-power blue laser diodes with indium tin oxide cladding on semipolar (2021) GaN substrates[J]. Applied Physics Letters, 2015, 106(11):111105. doi: 10.1063/1.4915324http://dx.doi.org/10.1063/1.4915324
NAKATSU Y, NAGAO Y, HIRAO T, et al. Blue and green ingan semiconductor lasers as light sources for displays[C]. SPIE OPTO. Proc SPIE 11280, Gallium Nitride Materials and Devices XV, San Francisco, California, USA. 2020, 11280: 81-87. doi: 10.1117/12.2541710http://dx.doi.org/10.1117/12.2541710
胡磊, 李德尧, 刘建平, 等. 连续工作7.5 W高功率氮化镓基蓝光激光器(特邀)[J]. 光子学报, 2022, 51(2):107-112. doi: 10.3788/gzxb20225102.0251209http://dx.doi.org/10.3788/gzxb20225102.0251209
HU L, LI D Y, LIU J P, et al. High-power GaN-based blue laser diodes with 7.5 W of light output power under continuous-wave operation(invited)[J]. Acta Photonica Sinica, 2022, 51(2):107-112.(in Chinese). doi: 10.3788/gzxb20225102.0251209http://dx.doi.org/10.3788/gzxb20225102.0251209
KÖNIG H, GERHARD S, ALI M, et al. Blue high power ingan semiconductor laser diodes: design optimization of laser bars and single emitters for best performance and reliability[C]. SPIE LASE. Proc SPIE 11262, High-Power Diode Laser Technology XVIII, San Francisco, California, USA. 2020, 11262: 156-164. doi: 10.1117/12.2543306http://dx.doi.org/10.1117/12.2543306
陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展[J]. 中国激光, 2020, 47(5): 0500001. doi: 10.3788/cjl202047.0500001http://dx.doi.org/10.3788/cjl202047.0500001
CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 2020, 47(5): 0500001.(in Chinese). doi: 10.3788/cjl202047.0500001http://dx.doi.org/10.3788/cjl202047.0500001
吴顺华, 刘国军, 王贞福, 等. 低温808nm高效率半导体激光器[J]. 发光学报, 2022, 43(5): 786-795. doi: 10.37188/cjl.20220025http://dx.doi.org/10.37188/cjl.20220025
WU S H, LIU G J, WANG Z F, et al. Low temperature 808 nm high efficiency semiconductor laser[J]. Chinese Journal of Luminescence, 2022, 43(5): 786-795.(in Chinese). doi: 10.37188/cjl.20220025http://dx.doi.org/10.37188/cjl.20220025
吴鹏. 百瓦级高功率蓝光半导体激光器研究[D]. 北京: 北京工业大学, 2018.
WU P. Study on 100W Level High-Power Blue Diode Laser[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19. doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
WANG L J, NING Y Q, QIN L, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19.(in Chinese). doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
LIU X, ZHAO W, XIONG L, et al. Packaging of High Power Semiconductor Lasers[M]. New York, NY: Springer New York, 2015. doi: 10.1007/978-1-4614-9263-4_7http://dx.doi.org/10.1007/978-1-4614-9263-4_7
BACHMANN F, LOOSEN P, POPRAWE R, et al. High power diode lasers: technolohy and applications[J].Proceedings of SPIE-The International Society for Optical Engineering, 2007,3888. doi: 10.1007/978-0-387-34729-5http://dx.doi.org/10.1007/978-0-387-34729-5
张秋月, 井红旗, 袁庆贺, 等. 管式炉中半导体激光器巴条封装[J]. 激光与光电子学进展, 2019, 56(9): 091402. doi: 10.3788/lop56.091402http://dx.doi.org/10.3788/lop56.091402
ZHANG Q Y, JING H Q, YUAN Q H, et al. Packaging of semiconductor laser bars in tube furnace[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091402.(in Chinese). doi: 10.3788/lop56.091402http://dx.doi.org/10.3788/lop56.091402
赵梓涵. 808 nm高功率半导体激光器封装技术研究[D]. 长春:长春理工大学, 2017.
ZHAO Z H. Research on Packaging Technology of 808nm High Power Semiconductor Laser[D] Chanchun: Chanchun University of Technology, 2017.(in Chinese)
张哲铭. 半导体激光器封装应力研究[D]. 长春: 长春理工大学, 2018. doi: 10.25103/jestr.106.14http://dx.doi.org/10.25103/jestr.106.14
ZHANG Z M. Packaging Stress Study of Semiconductor Lasers[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese). doi: 10.25103/jestr.106.14http://dx.doi.org/10.25103/jestr.106.14
0
Views
9
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution