1.江西理工大学 能源与机械工程学院,江西 南昌 330013
2.福州大学 机械工程及自动化学院,福建 福州 350108
扫 描 看 全 文
朱安,陈力.空间机器人在轨双臂辅助航天器对接力/位置嵌套双层滑模阻抗控制[J].光学精密工程,2023,31(22):3266-3278.
ZHU An,CHEN Li.Double layer sliding mode force/position impedance control for dual-arm space robot on orbit auxiliary docking spacecraft operation[J].Optics and Precision Engineering,2023,31(22):3266-3278.
朱安,陈力.空间机器人在轨双臂辅助航天器对接力/位置嵌套双层滑模阻抗控制[J].光学精密工程,2023,31(22):3266-3278. DOI: 10.37188/OPE.20233122.3266.
ZHU An,CHEN Li.Double layer sliding mode force/position impedance control for dual-arm space robot on orbit auxiliary docking spacecraft operation[J].Optics and Precision Engineering,2023,31(22):3266-3278. DOI: 10.37188/OPE.20233122.3266.
为了实现空间机器人捕获航天器及辅助对接操作的柔顺化,对航天器对接装置的输出力与位姿的精确控制进行了研究,且在关节电机与机械臂之间添加了弹簧阻尼缓冲装置,以防止接触、碰撞时产生的巨大冲击力造成关节破坏。首先,结合Newton第三定律、捕获点的速度约束及闭链系统的几何约束,获得了捕获航天器后的混合体系统动力学方程,通过动量守恒关系计算了碰撞冲击效应与冲击力。接着,通过航天器对接装置相对载体坐标系的运动学关系,建立了对接操作过程中的阻抗模型。然后,设计了一种鲁棒自适应双层滑模控制策略,其与阻抗控制相结合,采用力加载随动控制系统实现对接装置的位姿与输出力的精确控制,以降低接触、碰撞时的冲击力。该控制策略具有双层滑模结构,其第一层保证混合体系统在有限时间内收敛,第二层用于解决控制的高增益问题。最后,通过Lyapunov定理证明了系统的稳定性;利用数值仿真验证了所提控制策略的有效性。仿真结果表明,在给定的速度下缓冲装置最大可将碰撞冲击力矩降低46.78%,输出力的控制精度优于0.5 N,位置、姿态的控制精度优于10,-,3, m,0.5°。
To comply with the process of a space robot capturing a spacecraft and the subsequent auxiliary docking operation, precise control of the output force and position of the spacecraft docking device was studied herein. A spring damper buffer device was added between the joint motor and manipulator to prevent the joint from being damaged under the huge impact force generated during contact and impact. First, by combining Newton's third law, velocity constraints of the capture points, and closed-chain system geometric constraints, a dynamic model of the hybrid system after capture was obtained, and the impact effect and force were estimated based on momentum conservation. Then, the impedance model during docking was established through the kinematics of the spacecraft docking device relative to the base coordinate system. Subsequently, a robust adaptive-double-layer sliding-mode control strategy was developed. Combined with impedance control, this strategy employed a force load servo control system to accurately control the position and output force of the docking device to reduce the impact force during contact and impact. The control strategy featured a double-layer sliding-mode structure, with the first layer ensuring convergence of the hybrid system in finite time and the second layer being used to solve the high-gain problem of the controller. Finally, the stability of the system was proved using the Lyapunov theorem, and the effectiveness of the proposed strategy was verified through a numerical simulation. The simulation results indicate that the buffer device can reduce the impact force by 46.78% of the maximum at the given velocities. Moreover, the control accuracy of the output force is better than 0.5 N, while the accuracies of the position and attitude are better than 10,-,3, m and 0.5°, respectively.
双臂空间机器人缓冲装置辅助对接操作阻抗控制双层滑模
dual-arm space robotbuffer deviceauxiliary docking operationimpedance controldouble layer sliding mode
田甜, 刘海印. 美国航空航天局机器人在轨加注任务简析[J]. 中国航天, 2019(4):42-47. doi: 10.3969/j.issn.1002-7742.2019.04.011http://dx.doi.org/10.3969/j.issn.1002-7742.2019.04.011
TIAN T, LIU H. A brief analysis of NASA’ robotic refueling mission[J]. Aerospace China, 2019(4):42-47.(in Chinese). doi: 10.3969/j.issn.1002-7742.2019.04.011http://dx.doi.org/10.3969/j.issn.1002-7742.2019.04.011
TAYLOR T, KISTLER W, CITRON R. On-Orbit fuel depot deployment, management and evolution focused on cost reduction[C]. AIAA SPACE 2009 Conference & Exposition. Pasadena, California. Reston, Virigina: AIAA, 2009: 6757. doi: 10.2514/6.2009-6757http://dx.doi.org/10.2514/6.2009-6757
艾海平, 陈力. 空间机器人捕获航天器操作的避撞柔顺无源神经网络H∞控制[J]. 光学 精密工程, 2020, 28(3): 717-726. doi: 10.3788/ope.20202803.0717http://dx.doi.org/10.3788/ope.20202803.0717
AI H P, CHEN L. Passivity-based neural network H∞ avoidance compliant control of space robot capturing spacecraft[J]. Opt. Precision Eng., 2020, 28(3): 717-726.(in Chinese). doi: 10.3788/ope.20202803.0717http://dx.doi.org/10.3788/ope.20202803.0717
戈新生, 陈立群, 刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63-68. doi: 10.3969/j.issn.1000-4750.2006.03.012http://dx.doi.org/10.3969/j.issn.1000-4750.2006.03.012
GE X S, CHEN L Q, LIU Y Z. Optimal control of a nonholonomic motion planning for mutilbody systems[J]. Engineering Mechanics, 2006, 23(3): 63-68.(in Chinese). doi: 10.3969/j.issn.1000-4750.2006.03.012http://dx.doi.org/10.3969/j.issn.1000-4750.2006.03.012
COLESHILL E, OSHINOWO L, REMBALA R, et al. Dextre: Improving maintenance operations on the International Space Station[J]. Acta Astronautica, 2009, 64(9/10): 869-874. doi: 10.1016/j.actaastro.2008.11.011http://dx.doi.org/10.1016/j.actaastro.2008.11.011
DIFTLER M A, MEHLING J S, ABDALLAH M E, et al. Robonaut 2-the first humanoid robot in space[C]. 2011 IEEE International Conference on Robotics and Automation.9-13, 2011, Shanghai, China. IEEE, 2011: 2178-2183. doi: 10.1109/icra.2011.5979830http://dx.doi.org/10.1109/icra.2011.5979830
郭闻昊, 王天舒. 空间机器人抓捕目标星碰撞前构型优化[J]. 宇航学报, 2015, 36(4): 390-396. doi: JournalArticle/5b3b9a08c095d70f00810ba7http://dx.doi.org/JournalArticle/5b3b9a08c095d70f00810ba7
GUO W H, WANG T S. Pre-impact configuration optimization for a space robot capturing target satellite[J]. Journal of Astronautics, 2015, 36(4): 390-396.(in Chinese). doi: JournalArticle/5b3b9a08c095d70f00810ba7http://dx.doi.org/JournalArticle/5b3b9a08c095d70f00810ba7
JIA Y H, HU Q, XU S J. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters[J]. Acta Mechanica Sinica, 2014, 30(1): 112-124. doi: 10.1007/s10409-014-0005-1http://dx.doi.org/10.1007/s10409-014-0005-1
YAN L, XU W F, HU Z H, et al. Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation[J]. Multibody System Dynamics, 2019, 45(4): 431-455. doi: 10.1007/s11044-018-09647-zhttp://dx.doi.org/10.1007/s11044-018-09647-z
ZHANG L, JIA QING XUAN, CHEN G, et al. The analysis of free-floating space manipulator when tracking desired force/position[J]. Applied Mechanics and Materials, 2015, 742: 560-566. doi: 10.4028/www.scientific.net/amm.742.560http://dx.doi.org/10.4028/www.scientific.net/amm.742.560
LIU X F, LI H Q, CHEN Y J, et al. Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm[J]. Multibody System Dynamics, 2015, 33(3): 315-332. doi: 10.1007/s11044-014-9434-7http://dx.doi.org/10.1007/s11044-014-9434-7
WU S, MOU F, LIU Q, et al. Contact dynamics and control of a space robot capturing a tumbling object[J]. Acta Astronautica, 2018, 151: 532-542. doi: 10.1016/j.actaastro.2018.06.052http://dx.doi.org/10.1016/j.actaastro.2018.06.052
G E D M, SUN G H, ZOU Y J, et al. Impedance control of multi-arm space robot for the capture of non-cooperative targets[J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 1051-1061. doi: 10.23919/jsee.2020.000079http://dx.doi.org/10.23919/jsee.2020.000079
SHIBLI M. Unified modeling approach of kinematics, dynamics and control of a free-flying space robot interacting with a target satellite[J]. Intelligent Control and Automation, 2011, 2(1): 8-23.
SARIYILDIZ E, CHEN G, YU H Y. An acceleration-based robust motion controller design for a novel series elastic actuator[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1900-1910. doi: 10.1109/tie.2015.2512228http://dx.doi.org/10.1109/tie.2015.2512228
LI X, PAN Y P, CHEN G, et al. Continuous tracking control for a compliant actuator with two-stage stiffness[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(1): 57-66. doi: 10.1109/tase.2016.2574741http://dx.doi.org/10.1109/tase.2016.2574741
KEPPLER M, LAKATOS D, OTT C, et al. Elastic structure preserving (ESP) control for compliantly actuated robots[J]. IEEE Transactions on Robotics, 2018, 34(2): 317-335. doi: 10.1109/tro.2017.2776314http://dx.doi.org/10.1109/tro.2017.2776314
HOGAN N. Stable execution of contact tasks using impedance control[C]. Proceedings of 1987 IEEE International Conference on Robotics and Automation. March 31 - April 3, 1987, Raleigh, NC, USA. IEEE, 2003: 1047-1054.
JIAO C, YU L, SU X, et al. Adaptive hybrid impedance control for dual-arm cooperative manipulation with object uncertainties[J]. Automatica, 2022, 140: 110232. doi: 10.1016/j.automatica.2022.110232http://dx.doi.org/10.1016/j.automatica.2022.110232
YU X B, LI B, HE W, et al. Adaptive-constrained impedance control for human-robot Co-transportation[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13237-13249. doi: 10.1109/tcyb.2021.3107357http://dx.doi.org/10.1109/tcyb.2021.3107357
ZHAO X W, HAN S B, TAO B, et al. Model-based Actor-Critic learning of robotic impedance control in complex interactive environment[J]. IEEE Transactions on Industrial Electronics, 2021, 69(12): 13225-13235. doi: 10.1109/tie.2021.3134082http://dx.doi.org/10.1109/tie.2021.3134082
GUO Z Y. On a novel equivalent control-based adaptive sliding mode approach for autopilot design of BTT missiles[J]. Transactions of the Institute of Measurement and Control, 2018, 40(2): 578-590. doi: 10.1177/0142331216661756http://dx.doi.org/10.1177/0142331216661756
SHTESSEL Y, TALEB M, PLESTAN F. A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5): 759-769. doi: 10.1016/j.automatica.2012.02.024http://dx.doi.org/10.1016/j.automatica.2012.02.024
EDWARDS C, SHTESSEL Y. Adaptive dual-layer super-twisting control and observation[J]. International Journal of Control, 2016, 89(9): 1759-1766. doi: 10.1080/00207179.2016.1175030http://dx.doi.org/10.1080/00207179.2016.1175030
UTKIN VI, POZNYAK AS. Adaptive sliding mode control with application to super-twist algorithm: equivalent control method[J]. Automatica, 2013, 49(1): 39-47. doi: 10.1016/j.automatica.2012.09.008http://dx.doi.org/10.1016/j.automatica.2012.09.008
朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51(4): 1156-1169. doi: 10.6052/0459-1879-18-407http://dx.doi.org/10.6052/0459-1879-18-407
ZHU A, CHEN L. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169.(in Chinese). doi: 10.6052/0459-1879-18-407http://dx.doi.org/10.6052/0459-1879-18-407
LI M, FENG H, ZHANG X G. Modeling and Simulation for Z-Axis Force/Position-Servo system of assembly manipulator[C]. 2017 29th Chinese Control and Decision Conference (CCDC). 28-30, 2017, Chongqing, China. IEEE, 2017: 1285-1290. doi: 10.1109/ccdc.2017.7978715http://dx.doi.org/10.1109/ccdc.2017.7978715
0
Views
5
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution