1.厦门大学 仪器与电气系,福建 厦门 361000
2.厦门理工学院 机械与汽车工程学院,福建 厦门 361000
扫 描 看 全 文
康国毅,钟易晟,姜佳昕等.柔性湿度传感器低温直写制备[J].光学精密工程,2023,31(22):3279-3288.
KANG Guoyi,ZHONG Yisheng,JIANG Jiaxin,et al.Low-temperature direct writing fabrication of flexible humidity sensors[J].Optics and Precision Engineering,2023,31(22):3279-3288.
康国毅,钟易晟,姜佳昕等.柔性湿度传感器低温直写制备[J].光学精密工程,2023,31(22):3279-3288. DOI: 10.37188/OPE.20233122.3279.
KANG Guoyi,ZHONG Yisheng,JIANG Jiaxin,et al.Low-temperature direct writing fabrication of flexible humidity sensors[J].Optics and Precision Engineering,2023,31(22):3279-3288. DOI: 10.37188/OPE.20233122.3279.
三维导电结构的低温、高结合力直写喷印是柔性电子复合器件制造应用所面临的挑战。本文基于银氨络合机理制备出可用于三维导电结构成型的无颗粒直写溶液,克服了金属颗粒团聚的问题,做到了长期保存。50 ℃低温烧结条件下,银氨络合溶液制备的导电纤维与银纳米颗粒溶液制备的导电纤维相比导电性能优异,电阻低至365 Ω/mm。银氨络合溶液直写制备的纤维结构与柔性基底之间有着强附着性,并具备良好的自堆叠特性,可以通过调节纤维堆叠层数在10层到50层变化,控制导电纤维的电阻在6.7~34.1 Ω/mm范围内改变。在不同饱和盐溶液建立的湿度环境下,对基于银氨络合溶液设计的湿度传感器进行测试,传感器展现出良好的湿度响应性能,迟滞低至3.2%,同时在湿度循环变化下实时响应效果优良。无颗粒直写溶液在制备柔性电子产品方面有着可观的前景,并且在运动检测和健康管理等领域有广泛的应用。
The low-temperature, high-bonding direct writing of three-dimensional conductive structures poses a challenge to the manufacturing of flexible electronic composite devices. Based on the silver-ammonia complexation mechanism, a particle-free direct writing solution suitable for forming three-dimensional conductive structures has been developed in this study. The problem of metal particle aggregation was overcome, achieving long-term stability. Under low-temperature sintering conditions at 50 °C, the conductive fibers prepared using the silver-ammonia complex solution exhibit excellent conductivity, with resistance as low as 365 Ω/mm, surpassing those made with silver nanoparticle solutions. The fiber structures produced using the silver-ammonia complex solution have strong adhesion to flexible substrates and possess good self-stacking characteristics. By adjusting the number of fiber stacking layers from 10 to 50, the resistance of the conductive fibers can be controlled within the 6.7-34.1 Ω/mm range. A humidity sensor designed based on the silver-ammonia complex solution was tested in different saturated salt solutions to establish humidity environments. The sensor demonstrated excellent humidity responsiveness, with hysteresis as low as 3.2%, and exhibited ideal real-time response even under high humidity conditions. The particle-free direct writing solution holds promising prospects in the fabrication of flexible electronic products and finds wide applications in fields such as motion detection and health management.
电纺直写银氨络合低温烧结湿度传感器
electrohydrodynamic direct writingsilver ammonia complexationlow temperature sinteringhumidity sensor
张森浩, 邱东海, 衣宁, 等. 可穿戴柔性电子的快速制备与医疗应用[J]. 光学 精密工程, 2019, 27(6): 1362-1369. doi: 10.3788/ope.20192706.1362http://dx.doi.org/10.3788/ope.20192706.1362
ZHANG S H, QIU D H, YI N, et al. Rapid preparation and medical application of wearable Flexible electronics[J]. Opt. Precision Eng., 2019, 27(6): 1362-1369.(in Chinese). doi: 10.3788/ope.20192706.1362http://dx.doi.org/10.3788/ope.20192706.1362
WANG H M, LI S, LU H J, et al. Carbon-based flexible devices for comprehensive health monitoring[J]. Small Methods, 2023, 7(2): 2201340. doi: 10.1002/smtd.202201340http://dx.doi.org/10.1002/smtd.202201340
ZHU C, WU J W, YAN J H, et al. Advanced fiber materials for wearable electronics[J].Advanced Fiber Materials, 2023, 5(1): 12-35. doi: 10.1007/s42765-022-00212-0http://dx.doi.org/10.1007/s42765-022-00212-0
SUN J Z, SUN R, JIA P, et al. Fabricating flexible conductive structures by printing techniques and printable conductive materials[J]. Journal of Materials Chemistry C, 2022, 10(25): 9441-9464. doi: 10.1039/d2tc01168ahttp://dx.doi.org/10.1039/d2tc01168a
YANG W D, CHENG X, GUO Z H, et al. Design, fabrication and applications of flexible RFID antennas based on printed electronic materials and technologies[J]. Journal of Materials Chemistry C, 2023, 11(2): 406-425. doi: 10.1039/d2tc03736jhttp://dx.doi.org/10.1039/d2tc03736j
ZHANG S, WANG L, LUO Y, et al. A convenient, low-cost graphene UV-cured additive manufacturing electronic process to achieve flexible sensors[J]. Chemical Engineering Journal, 2023, 451: 138521. doi: 10.1016/j.cej.2022.138521http://dx.doi.org/10.1016/j.cej.2022.138521
JEON HS, YAO W, KIM KH, et al. Stable, amphiphobic, and electrically conductive coating on flexible polyimide substrate[J]. Journal of Industrial and Engineering Chemistry, 2023, 120: 429-438. doi: 10.1016/j.jiec.2022.12.050http://dx.doi.org/10.1016/j.jiec.2022.12.050
郑高峰, 姜佳昕, 康国毅, 等. 光栅编码器电纺直写精确喷印[J]. 光学 精密工程, 2021, 29(10): 2393-2399. doi: 10.37188/ope.2021.0092http://dx.doi.org/10.37188/ope.2021.0092
ZHENG G F, JIANG J X, KANG G Y, et al. Optical grating encoder via precise electrohydrodynamic direct-writing[J]. Opt. Precision Eng., 2021, 29(10): 2393-2399.(in Chinese). doi: 10.37188/ope.2021.0092http://dx.doi.org/10.37188/ope.2021.0092
LIU X M, TONG J L, WANG J J, et al. BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors[J]. Journal of Materials Chemistry C, 2023, 11(14): 4614-4622. doi: 10.1039/d2tc05291ahttp://dx.doi.org/10.1039/d2tc05291a
赵扬, 姜佳昕, 张恺, 等. 基于电纺直写的图案化微纳结构喷印技术[J]. 光学 精密工程, 2016, 24(9): 2224-2231. doi: 10.3788/ope.20162409.2224http://dx.doi.org/10.3788/ope.20162409.2224
ZHAO Y, JIANG J X, ZHANG K, et al. Precision deposition of micro/nano pattern printed by electrohydrodynamic direct-write[J]. Opt. Precision Eng., 2016, 24(9): 2224-2231.(in Chinese). doi: 10.3788/ope.20162409.2224http://dx.doi.org/10.3788/ope.20162409.2224
XU J, CHEN Y, ZHANG W, et al. Direct ink writing of nAl/pCuO/HPMC with outstanding combustion performance and ignition performance[J]. Combustion and Flame, 2022, 236: 111747. doi: 10.1016/j.combustflame.2021.111747http://dx.doi.org/10.1016/j.combustflame.2021.111747
KSAPABUTR B, PANAPOY M. Fundamentals of Electrospinning and Safety [M]. Metal Oxide-Based Nanofibers and Their Applications. Elsevier. 2022: 3-30. doi: 10.1016/b978-0-12-820629-4.00004-7http://dx.doi.org/10.1016/b978-0-12-820629-4.00004-7
NIKBAKHTNASRABADI F, HOSSEINI E S, DERVIN S, et al. Smart bandage with inductor-capacitor resonant tank based printed wireless pressure sensor on electrospun poly-L-lactide nanofibers[J]. Advanced Electronic Materials, 2022, 8(7): 2101348. doi: 10.1002/aelm.202101348http://dx.doi.org/10.1002/aelm.202101348
肖渊, 李倩, 张威, 等. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10)89-96
XIAO Y, LI Q, ZHANG W, et al. Influencing factors on flexible fabric-based electrical circuit formation by micro-jet printed primary cell replacement deposition[J]. Journal of Textile Research, 2022, 43(10)89-96(in Chinese)
DOUGLAS S P, MRIG S, KNAPP C E. MODs vs. NPs: vying for the future of printed electronics[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2021, 27(31): 8062-8081. doi: 10.1002/chem.202004860http://dx.doi.org/10.1002/chem.202004860
BHAT K S, AHMAD R, WANG Y S, et al. Low-temperature sintering of highly conductive silver ink for flexible electronics[J]. Journal of Materials Chemistry C, 2016, 4(36): 8522-8527. doi: 10.1039/c6tc02751bhttp://dx.doi.org/10.1039/c6tc02751b
REZAGA B F Y, DONNABELLE L BALELA M. Chemical sintering of Ag nanoparticle conductive inks at room temperature for printable electronics[J].Journal of Materials Science: Materials in Electronics, 2021, 32(13): 17764-17779. doi: 10.1007/s10854-021-06313-7http://dx.doi.org/10.1007/s10854-021-06313-7
HE J, ZHENG X, ZHENG Z, et al. Pair directed silver nano-lines by single-particle assembly in nanofibers for non-contact humidity sensors[J]. Nano Energy, 2022, 92: 106748. doi: 10.1016/j.nanoen.2021.106748http://dx.doi.org/10.1016/j.nanoen.2021.106748
LIU N, SUN X, CHEN Z, et al. Direct ink writing of dense alumina ceramics prepared by rapid sintering[J]. Ceramics International, 2022, 48(20): 30767-30778. doi: 10.1016/j.ceramint.2022.07.028http://dx.doi.org/10.1016/j.ceramint.2022.07.028
RAJ R, DIXIT A R. Direct ink writing of carbon-doped polymeric composite ink: a review on its requirements and applications[J]. 3D Printing and Additive Manufacturing, 2023, 10(4): 828-854. doi: 10.1089/3dp.2021.0209http://dx.doi.org/10.1089/3dp.2021.0209
AZIZ SB, MARIF RB, BRZA MA, et al. Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: new insights to band gap study[J]. Results in Physics, 2019, 13: 102220. doi: 10.1016/j.rinp.2019.102220http://dx.doi.org/10.1016/j.rinp.2019.102220
ZHANG Z, HE H, FU W, et al. Electro-hydrodynamic direct-writing technology toward patterned ultra-thin fibers: advances, materials and applications[J]. Nano Today, 2020, 35: 100942. doi: 10.1016/j.nantod.2020.100942http://dx.doi.org/10.1016/j.nantod.2020.100942
NAZEMI M M, KHODABANDEH A, HADJIZADEH A. Near-field electrospinning: crucial parameters, challenges, and applications[J]. ACS Applied Bio Materials, 2022, 5(2): 394-412. doi: 10.1021/acsabm.1c00944http://dx.doi.org/10.1021/acsabm.1c00944
BISHT G S, CANTON G, MIRSEPASSI A, et al. Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning[J]. Nano Letters, 2011, 11(4): 1831-1837. doi: 10.1021/nl2006164http://dx.doi.org/10.1021/nl2006164
李文望, 郑高峰, 王翔, 等. 电纺直写纳米纤维在图案化基底的定位沉积[J]. 光学 精密工程, 2010, 18(10)2231-2238. doi: 10.3788/OPE.20101810.2231http://dx.doi.org/10.3788/OPE.20101810.2231
LI W W, ZHENG G F, WANG X, et al. Position deposition of electrospinning direct-writing nanofiber on pattern substrate[J]. Opt. Precision Eng., 2010, 18(10)2231-2238(in Chinese). doi: 10.3788/OPE.20101810.2231http://dx.doi.org/10.3788/OPE.20101810.2231
FANG J, WANG H X, NIU H T, et al. Evolution of fiber morphology during electrospinning[J]. Journal of Applied Polymer Science, 2010, 118(5): 2553-2561. doi: 10.1002/app.32569http://dx.doi.org/10.1002/app.32569
MOHAN A, SINGHAL R, RAMANAN S R. A study on the effect of the collector properties on the fabrication of magnetic polystyrene nanocomposite fibers using the electrospinning technique[J]. Journal of Applied Polymer Science, 2023, 140(6): 643-650. doi: 10.1002/app.53461http://dx.doi.org/10.1002/app.53461
MOU Y, WANG H, PENG Y, et al. Low temperature enhanced flexible conductive film by Ag flake/ion composite ink[J]. Materials & Design, 2020, 186: 108339. doi: 10.1016/j.matdes.2019.108339http://dx.doi.org/10.1016/j.matdes.2019.108339
PARK Y S, KIM J, OH J M, et al. Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios[J]. Nano Letters, 2020, 20(1): 441-448. doi: 10.1021/acs.nanolett.9b04162http://dx.doi.org/10.1021/acs.nanolett.9b04162
PIDCOCK G C, PANHUIS MIN HET. Extrusion printing conducting gel-carbon nanotube structures upon flexible substrates[C]. 2010 Conference on Optoelectronic and Microelectronic Materials and Devices.12-15, 2010, Canberra, ACT, Australia. IEEE, 2011: 179-180. doi: 10.1109/commad.2010.5699727http://dx.doi.org/10.1109/commad.2010.5699727
ZHANG J, ZHEN Y, XUE H, et al. An urchin-like SnO2/NaNbO3 nanocomposite with stable humidity-sensing properties at room temperature[J]. Sensors and Actuators B: Chemical, 2019, 283: 643-650. doi: 10.1016/j.snb.2018.12.035http://dx.doi.org/10.1016/j.snb.2018.12.035
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution