1.北京工业大学 北京市激光应用技术工程技术研究中心,北京 100124
2.北京工业大学 跨尺度激光成型制造技术教育部重点实验室,北京 100124
3.北京工业大学 激光工程研究院 半导体光电先进技术研究所,北京 100124
4.中国电子科技集团公司第十一研究院 固体激光科学技术实验室,北京 100015
扫 描 看 全 文
裴思琪,张天宇,张昆等.基于对称双模耦合器的波长可切换柱矢量光纤激光器[J].光学精密工程,2023,31(23):3395-3404.
PEI Siqi,ZHANG Tianyu,ZHANG Kun,et al.Wavelength-switchable cylindrical vector fiber laser based on symmetrical two-mode coupler[J].Optics and Precision Engineering,2023,31(23):3395-3404.
裴思琪,张天宇,张昆等.基于对称双模耦合器的波长可切换柱矢量光纤激光器[J].光学精密工程,2023,31(23):3395-3404. DOI: 10.37188/OPE.20233123.3395.
PEI Siqi,ZHANG Tianyu,ZHANG Kun,et al.Wavelength-switchable cylindrical vector fiber laser based on symmetrical two-mode coupler[J].Optics and Precision Engineering,2023,31(23):3395-3404. DOI: 10.37188/OPE.20233123.3395.
为了实现高纯度脉冲柱矢量光的输出,提出并搭建基于对称双模耦合器的波长可切换的被动锁模柱矢量全光纤激光器。根据光纤传输原理得到基模向高阶模转换的折射率匹配直径,运用模式耦合模理论及光束传播法模拟分析了对称双模耦合器的结构参数对模式选择及耦合特性的影响,采用熔融拉锥法并免去传统的模式选择耦合器制作上的预拉锥工艺制作了对称双模耦合器,通过搭建一套被动锁模柱矢量全光纤激光器实现了中心波长1 039 nm和1 068 nm可切换、脉冲时间间隔为113.8 ns、重频为8.78 MHz、脉宽660 ps/656 ps、最大输出平均功率为5.25 mW/5.2 mW、模式纯度大于97%的柱矢量光输出。实验验证了对称双模耦合器的可行性,为后续高纯度柱矢量光的获得提供一种可行的方案。
To obtain high-purity cylindrical vector beam pulses, a wavelength-switchable passive mode-locked cylindrical vector beams all-fiber laser is proposed and constructed based on a symmetrical two-mode coupler. First, the refractive index matching diameter for the conversion from the fundamental mode to the higher-order mode was obtained based on the principles of fiber optic transmission. The influence exerted by the structural parameters of the symmetrical two-mode coupler on mode selection and coupling characteristics was analyzed, employing simulations of mode coupling theory and the beam propagation method. The symmetrical double-mode coupler was fabricated utilizing the fusion tapering method. This method eliminates the complicated pre-taper process commonly employed in traditional mode selection coupler production. Finally, a passive mode-locked all-fiber laser, based on the symmetrical two-mode coupler, was constructed. This laser showcases a switchable central wavelength of 1 039 nm and 1 068 nm, pulse repetition interval of 113.8 ns, repetition rate of 8.78 MHz, pulse durations of 660 ps/656 ps, and maximum output average power of 5.25 mW/5.2 mW. In addition, it achieves a mode purity of over 97% for the vector beam output. The conducted experiments validate the feasibility of the symmetrical two-mode coupler and present a viable solution for obtaining high-purity cylindrical vector beams in future applications.
光纤激光器对称双模耦合器非线性偏振旋转锁模柱矢量光高纯度
fiber lasersymmetric two-mode couplernonlinear polarization rotation principle mode-lockedcylindrical vector beamshigh mode purity
ZHAN Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi: 10.1364/aop.1.000001http://dx.doi.org/10.1364/aop.1.000001
TUGCHIN B N, JANUNTS N, KLEIN A E, et al. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields[J]. ACS Photonics, 2015, 2(10): 1468-1475. doi: 10.1021/acsphotonics.5b00339http://dx.doi.org/10.1021/acsphotonics.5b00339
YU W T, JI Z H, DONG D S, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1): 147-152. doi: 10.1002/lpor.201500151http://dx.doi.org/10.1002/lpor.201500151
KOZAWA Y, MATSUNAGA D, SATO S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86. doi: 10.1364/optica.5.000086http://dx.doi.org/10.1364/optica.5.000086
ZHAN Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382. doi: 10.1364/opex.12.003377http://dx.doi.org/10.1364/opex.12.003377
MA Y B, RUI G H, GU B, et al. Trapping and manipulation of nanoparticles using multifocal optical vortex metalens[J]. Scientific Reports, 2017, 7(1): 14611. doi: 10.1038/s41598-017-14449-yhttp://dx.doi.org/10.1038/s41598-017-14449-y
RICHARDSON D J, FINI J M, NELSON L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94http://dx.doi.org/10.1038/nphoton.2013.94
QIAO W, LEI T, WU Z T, et al. Approach to multiplexing fiber communication with cylindrical vector beams[J]. Optics Letters, 2017, 42(13): 2579. doi: 10.1364/ol.42.002579http://dx.doi.org/10.1364/ol.42.002579
WANG C F, YANG B, CHENG M L, et al. Cylindrical vector beam multiplexing for radio-over-fiber communication with dielectric metasurfaces[J]. Optics Express, 2020, 28(26): 38666-38681. doi: 10.1364/oe.406300http://dx.doi.org/10.1364/oe.406300
CHEN S Q, XIE Z Q, YE H P, et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control[J]. Light: Science & Applications, 2021, 10: 222. doi: 10.1038/s41377-021-00667-7http://dx.doi.org/10.1038/s41377-021-00667-7
MARCEAU V, APRIL A, PICHÉ M. Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses[J]. Optics Letters, 2012, 37(13): 2442. doi: 10.1364/ol.37.002442http://dx.doi.org/10.1364/ol.37.002442
WANG X Y, ZHANG Y Q, DAI Y M, et al. Enhancing plasmonic trapping with a perfect radially polarized beam[J]. Photonics Research, 2018, 6(9): 847–852. doi: 10.1364/prj.6.000847http://dx.doi.org/10.1364/prj.6.000847
MEIER M, ROMANO V, FEURER T. Material processing with pulsed radially and azimuthally polarized laser radiation[J].Applied Physics A, 2007, 86(3): 329-334. doi: 10.1007/s00339-006-3784-9http://dx.doi.org/10.1007/s00339-006-3784-9
YAN L, GREGG P, KARIMI E, et al. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy[J]. Optica, 2015, 2(10): 900-903. doi: 10.1364/optica.2.000900http://dx.doi.org/10.1364/optica.2.000900
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/ol.19.000780http://dx.doi.org/10.1364/ol.19.000780
BALZAROTTI F, EILERS Y, GWOSCH K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 2017, 355(6325): 606-612. doi: 10.1126/science.aak9913http://dx.doi.org/10.1126/science.aak9913
EILERS Y, TA H S, GWOSCH K C, et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(24): 6117-6122. doi: 10.1073/pnas.1801672115http://dx.doi.org/10.1073/pnas.1801672115
HNATOVSKY C, SHVEDOV V G, SHOSTKA N, et al. Polarization-sensitive femtosecond laser ablation with tightly focused vortex pulses[C].Conference on Lasers and Electro-Optics 2012. San Jose, California. Washington, D.C.: OSA, 2012,37(2):226-228. doi: 10.1364/ol.37.000226http://dx.doi.org/10.1364/ol.37.000226
BASHKANSKY M, PARK D, FATEMI F K. Azimuthally and radially polarized light with a nematic SLM[J]. Optics Express, 2009, 18(1): 212-217. doi: 10.1364/oe.18.000212http://dx.doi.org/10.1364/oe.18.000212
HE Y L, YE H P, LIU J M, et al. Order-controllable cylindrical vector vortex beam generation by using spatial light modulator and cascaded metasurfaces[J]. IEEE Photonics Journal, 2017, 9(5): 1-10. doi: 10.1109/jphot.2017.2741508http://dx.doi.org/10.1109/jphot.2017.2741508
ZHOU Y, WANG A T, GU C, et al. Actively mode-locked all fiber laser with cylindrical vector beam output[J]. Optics Letters, 2016, 41(3): 548-550. doi: 10.1016/s0030-4018(02)01122-7http://dx.doi.org/10.1016/s0030-4018(02)01122-7
GROSJEAN T, COURJON D, SPAJER M. An all-fiber device for generating radially and other polarized light beams[J]. Optics Communications, 2002, 203(1/2): 1-5. doi: 10.1016/s0030-4018(02)01122-7http://dx.doi.org/10.1016/s0030-4018(02)01122-7
BIRKS T A, GRIS-SÁNCHEZ I, YEROLATSITIS S. The photonic lantern[C].CLEO: 2014. San Jose, California. Washington, D.C.: OSA, 2014, 7(2):107-167. doi: 10.1364/aop.7.000107http://dx.doi.org/10.1364/aop.7.000107
LIU T, CHEN S P, QI X, et al. High-power transverse-mode-switchable all-fiber picosecond MOPA[J]. Optics Express, 2016, 24(24): 27821-27827. doi: 10.1364/oe.24.027821http://dx.doi.org/10.1364/oe.24.027821
LI J L, WANG C C, WANG W Q. Generation of an azimuthally polarized beam with a metallic ring core fiber[J]. Applied Optics, 2013, 52(32): 7759-7768. doi: 10.1364/ao.52.007759http://dx.doi.org/10.1364/ao.52.007759
LI H X, YAN K, ZHANG Y M, et al. Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity[J]. Applied Physics Express, 2018, 11(12): 122502. doi: 10.7567/apex.11.122502http://dx.doi.org/10.7567/apex.11.122502
ISMAEEL R, LEE T, ODURO B, et al. All-fiber fused directional coupler for highly efficient spatial mode conversion[J]. Optics Express, 2014, 22(10): 11610-11619. doi: 10.1364/oe.22.011610http://dx.doi.org/10.1364/oe.22.011610
XU Y, CHEN S, WANG Z Q, et al. Cylindrical vector beam fiber laser with a symmetric two-mode fiber coupler[J]. Photonics Research, 2019, 7(12): 1479-1484. doi: 10.1364/prj.7.001479http://dx.doi.org/10.1364/prj.7.001479
LU Y Q, LIU S, ZHANG Z X. High power mode-locked fiber laser with cylindrical vector beam generation[J]. Optik, 2020, 223: 165623. doi: 10.1016/j.ijleo.2020.165623http://dx.doi.org/10.1016/j.ijleo.2020.165623
SHI F, YAO H, HUANG Y P, et al. Wavelength-switchable all-fiber laser-emitting radially polarized beams[J]. Applied Optics, 2020, 59(4): 1206-1211. doi: 10.1364/ao.382496http://dx.doi.org/10.1364/ao.382496
DAI C S, DONG Z P, ZHANG Y M, et al. Mode-locked fiber laser generating cylindrical vector beams based on an all-polarization-maintaining fiber structure[J]. Optics & Laser Technology, 2022, 146: 107592. doi: 10.1016/j.optlastec.2021.107592http://dx.doi.org/10.1016/j.optlastec.2021.107592
SUN B, WANG A T, XU L X, et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating[J]. Optics Letters, 2012, 37(4): 464-466. doi: 10.1364/ol.37.000464http://dx.doi.org/10.1364/ol.37.000464
贾文增, 刘学胜, 司汉英, 等. 基于LCP径向偏振光输出的掺镱MOPA脉冲光纤激光器[J]. 光学 精密工程, 2020, 28(5):997-1004.
JIA W Z, LIU X SH, SI H Y, et al. Yb-doped fiber MOPA system with radially polarized output beam based on LCP vortex retarder[J]. Opt. Precision Eng., 2020, 28(5):997-1004.(in Chinese)
王健. 导波光学[M]. 第2版. 北京: 清华大学出版社, 2019.
WANG J. Waveguide Optics[M]. 2nd ed. Beijing: Tsinghua University Press, 2019.(in Chinese)
0
Views
17
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution