1.北京理工大学 光电学院 复杂环境智能感测技术工信部重点实验室,北京100081
扫 描 看 全 文
王伟,杜卓,程然等.激光差动共焦透镜中心偏的自动测量[J].光学精密工程,2023,31(23):3405-3413.
WANG Wei,DU Zhuo,CHENG Ran,et al.Automatic measurement of center deviation of lens of laser differential confocal[J].Optics and Precision Engineering,2023,31(23):3405-3413.
王伟,杜卓,程然等.激光差动共焦透镜中心偏的自动测量[J].光学精密工程,2023,31(23):3405-3413. DOI: 10.37188/OPE.20233123.3405.
WANG Wei,DU Zhuo,CHENG Ran,et al.Automatic measurement of center deviation of lens of laser differential confocal[J].Optics and Precision Engineering,2023,31(23):3405-3413. DOI: 10.37188/OPE.20233123.3405.
针对现有中心偏差测量方法中测量精度低、透镜姿态调整人为干扰大的问题,提出一种差动共焦透镜中心偏自动测量方法。该方法通过差动共焦定焦技术,依据差动共焦轴向光强响应曲线的过零点精确对应被测镜特征点这一特性,实现对被测镜猫眼点及共焦点的精准定位;通过高精度气浮转轴驱动被测镜旋转,用位移传感器、圆光栅记录被测镜的位置信息,结合五维位姿自动调整机构,实现对被测镜姿态的高精度校正,消除姿态偏差,提高测量精度;最终,搭建了激光差动共焦透镜中心偏自动测量系统,实现了透镜中心偏的高精度自动测量。实验结果表明:透镜中心偏的测量精度可达0.41%,测量重复性优于100 nm。与现有的人工单次测量相比,该方法的测量重复性较好、随机误差小、测量精度高,为高精度透镜中心偏自动测量提供了一种技术途径。
To address the problems of low measurement accuracy and significant human interference in lens position adjustment in existing center deviation measurement methods, this paper proposes an automatic measurement method for the center deviation of differential confocal lenses. This method uses differential confocal focusing technology to precisely locate the cat's eye and confocal points of the measured lens, based on the fact that the zero point of the differential confocal axial light intensity response curve corresponds precisely to the characteristic point of the measured lens. The high-precision air-bearing rotating shaft drives the rotation of the measured mirror, while the displacement sensor records the position information of the measured mirror. In combination with the five-dimensional posture automatic adjustment mechanism, the high-precision correction of the attitude deviation of the measured mirror was realized, the eccentricity error was eliminated, and the measurement accuracy was improved. Finally, a laser differential confocal lens center deviation measurement system was established, which automatically measured the lens center deviation with high precision. The experimental results show that the measurement accuracy of the lens eccentricity can reach 0.41%, while the measurement repeatability is greater than 100 nm. Compared with the existing manual single measurement method, the proposed method has good repeatability, small random error, and high measurement accuracy. It serves as a new technical approach for the automatic measurement of lens eccentricity with high precision.
激光测量差动共焦中心偏自动调整自动测量姿态偏差
laser measurementdifferential confocalcentrality deviationautomatic adjustmentautomatic measurementposition deviation
GIL-SANTOS E, BAKER C, LEMAÎTRE A, et al. Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching[J]. Nature Communications, 2017, 8(1): 14267. doi: 10.1038/ncomms14267http://dx.doi.org/10.1038/ncomms14267
LIU B, WANG W, QU Y J, et al. Design of an adjustable bipod flexure for a large-aperture mirror of a space camera[J]. Applied Optics, 2018, 57(15): 4048-4055. doi: 10.1364/ao.57.004048http://dx.doi.org/10.1364/ao.57.004048
PATANE P, NANDGAONKAR M. Review: Multipoint laser ignition system and its applications to IC engines[J]. Optics & Laser Technology, 2020, 130: 106305. doi: 10.1016/j.optlastec.2020.106305http://dx.doi.org/10.1016/j.optlastec.2020.106305
祁锰, 李宏, 郭忠达, 等. 中心偏误差对非球面透射式光学系统像差的影响[J]. 光学与光电技术, 2022, 20(2): 134-139. doi: 10.3969/j.issn.1672-3392.2022.2.gxygdjs202202017http://dx.doi.org/10.3969/j.issn.1672-3392.2022.2.gxygdjs202202017
QI M, LI H, GUO ZH D, et al. Center offset error of aspheric transmission type optical system aberration[J]. Optics & Optoelectronic Technology, 2022, 20(2): 134-139.(in Chinese). doi: 10.3969/j.issn.1672-3392.2022.2.gxygdjs202202017http://dx.doi.org/10.3969/j.issn.1672-3392.2022.2.gxygdjs202202017
葛洪, 王允, 邱丽荣. 高精度共焦自准直中心偏测量装置[J]. 光学技术, 2018, 44(6): 681-685.
GE H, WANG Y, QIU L R. Confocal self-collimation decentration measurement structure with high accuracy[J]. Optical Technique, 2018, 44(6): 681-685.(in Chinese)
李响. 光学定心装配折反式测量系统研究[D]. 长春: 长春理工大学, 2019.
LI X. Research on Refractive Measuring System for Optical Centering Assembly[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese)
闫思思, 刘缠牢. 基于激光干涉的透镜中心偏测量技术研究[C];西部光子学学术会议, 中国陕西西安, F, 2011.
YAN S S,LIU CH L.Research on measurement technology of lens center deviation based on laser interference[C].Western Photo Science Conference. Xi 'an, Shanxi, China,F, 2011. (in Chinese)
罗杰, 刘子豪, 刘一郡, 等. 基于卡尔曼预测的差动共焦轮廓跟踪测量方法[J]. 仪器仪表学报, 2023, 44(3): 25-32.
LUO J, LIU Z H, LIU Y J, et al. Differential confocal profile tracking measurement method based on Kalman prediction[J]. Chinese Journal of Scientific Instrument, 2023, 44(3): 25-32.(in Chinese)
庄雨晴, 章广威, 赵维谦, 等. 五维位姿监测的差动共焦曲率半径测量[J]. 光学 精密工程, 2023, 31(7): 975-981. doi: 10.37188/ope.20233107.0975http://dx.doi.org/10.37188/ope.20233107.0975
ZHUANG Y Q, ZHANG G W, ZHAO W Q, et al. Differential confocal radius of curvature measurement method for five-dimensional position monitoring[J]. Optics and Precision Engineering, 2023, 31(7): 975-981.(in Chinese). doi: 10.37188/ope.20233107.0975http://dx.doi.org/10.37188/ope.20233107.0975
张泉. 红外光学系统中心偏装调的研究[C].中国光学学会2011年学术大会, 中国广东深圳, F, 2011.
ZHANG Q.Research on center offset adjustment of infrared optical system [C].Academic Conference of Chinese Optical Society in 2011,Shenzhen,Guangdong,China, F, 2011. (in Chinese)
刘伟. 全自动测量轴圆度的V形法测量系统研究[J]. 光学 精密工程, 2000, 8(5): 478-481. doi: 10.3321/j.issn:1004-924X.2000.05.017http://dx.doi.org/10.3321/j.issn:1004-924X.2000.05.017
LIU W. Automatic measurement system for axis roundness[J]. Optics and Precision Engineering, 2000, 8(5): 478-481.(in Chinese). doi: 10.3321/j.issn:1004-924X.2000.05.017http://dx.doi.org/10.3321/j.issn:1004-924X.2000.05.017
张强. 光学镜头偏心误差的自动化测量技术研究[D]. 西安: 西安工业大学, 2018.
ZHANG Q. Research on Automatic Measurement Technology of Optical Lens Eccentricity Error[D]. Xi'an: Xi'an Technological University, 2018. (in Chinese)
CARNEIRO DE ALBUQUERQUE B F, LUIS DE SOUSA F, MONTES A S. Multi-objective approach for the automatic design of optical systems[J]. Optics Express, 2016, 24(6): 6619-6643. doi: 10.1364/oe.24.006619http://dx.doi.org/10.1364/oe.24.006619
GUO D B, YIN L, YUAN G. New automatic optical design method based on combination of particle swarm optimization and least squares[J]. Optics Express, 2019, 27(12): 17027-17040. doi: 10.1364/oe.27.017027http://dx.doi.org/10.1364/oe.27.017027
郭浩, 肖阳, 董松, 等. 激光共焦球面元件姿态自动调整系统[J]. 应用光学, 2019, 40(1):132-137. doi: 10.5768/jao201940.0107001http://dx.doi.org/10.5768/jao201940.0107001
GUO H, XIAO Y, DONG S, et al. Laser confocal automatic adjustment system for attitude of spherical component[J]. Journal of Applied Optics, 2019, 40(1):132-137.(in Chinese). doi: 10.5768/jao201940.0107001http://dx.doi.org/10.5768/jao201940.0107001
曾付山. 透镜组中心偏自动化测量的研究[D]. 武汉: 华中科技大学, 2007.
ZENG F SH. Research on Automatic Measurement of Lens Group Eccentricity[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)
ZINCHENKO S, MOISEIENKO V, TOVSTOKORYI O, et al. Automatic Beam Aiming of the Laser Optical Reference System at the Center of Reflector to Improve the Accuracy and Reliability of Dynamic Positioning[M]. Advances in Computer Science for Engineering and Education IV. Cham: Springer International Publishing, 2021: 3-14. doi: 10.1007/978-3-030-80472-5_1http://dx.doi.org/10.1007/978-3-030-80472-5_1
章广威, 崔健, 邱丽荣, 等. 激光差动共焦透镜中心偏测量系统设计与实现[J]. 仪器仪表学报, 2023, 44(2): 24-31.
ZHANG G W, CUI J, QIU L R, et al. Design and implementation of laser differential confocal centering error of the lenses measurement system[J]. Chinese Journal of Scientific Instrument, 2023, 44(2): 24-31.(in Chinese)
赵维谦, 王龙肖, 邱丽荣, 等. 激光聚变靶丸内表面轮廓测量系统的研制[J]. 光学 精密工程, 2019, 27(5): 1013-1023. doi: 10.3788/ope.20192705.1013http://dx.doi.org/10.3788/ope.20192705.1013
ZHAO W Q, WANG L X, QIU L R, et al. Development of inner-surface profile measurementsystem for ICF capsule[J]. Optics and Precision Engineering, 2019, 27(5): 1013-1023.(in Chinese). doi: 10.3788/ope.20192705.1013http://dx.doi.org/10.3788/ope.20192705.1013
0
Views
12
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution