1.季华实验室,广东 佛山 528200
2.中国人民解放军96035部队,吉林 吉林 132101
3.中国科学院大学 北京 100049
扫 描 看 全 文
孙景旭,费强,周峰等.轻小型量子跟踪仪接收望远镜[J].光学精密工程,2023,31(23):3426-3437.
SUN Jingxu,FEI Qiang,ZHOU Feng,et al.Lightweight and miniaturized quantum tracker receiving telescope[J].Optics and Precision Engineering,2023,31(23):3426-3437.
孙景旭,费强,周峰等.轻小型量子跟踪仪接收望远镜[J].光学精密工程,2023,31(23):3426-3437. DOI: 10.37188/OPE.20233123.3426.
SUN Jingxu,FEI Qiang,ZHOU Feng,et al.Lightweight and miniaturized quantum tracker receiving telescope[J].Optics and Precision Engineering,2023,31(23):3426-3437. DOI: 10.37188/OPE.20233123.3426.
随着量子保密通信网络及产业化发展,轻小型化接收望远镜满足量子跟踪仪规模化和便携式的多应用场景需求。对满足接收望远镜的技术体制进行了对比分析,确定了RC+小像元+量子模块的光学系统形式,采用小,F,数+微小像元的技术体制。设计了全铝一体化结构的φ280量子跟踪仪接收望远镜,F5的RC望远镜采用RSA-6061微晶铝合金作为反射镜的结构材料,配合一体化硬铝合金高刚性结构,静力学(重力变形和温度变形)仿真分析结果满足近衍射极限成像和高效率量子接收要求,动力学仿真分析结果表明,一阶模态为91 Hz,具有足够高的动态刚度和安全冗余。集成测试结果表明:望远镜的中心视场波像差RMS为,λ,/14.7,5个视场系统波像差均优于,λ,/12.7,可以确保近衍射极限高质量信标成像,奈奎斯特频率处的光学传递函数为0.15;HV+,-,四个偏振态的平均偏振对比度为454,全系统效率为51.93%,可以高质量接收量子密钥;,-,25 ℃和+30 ℃外场恒星成像实验验证了系统可以稳定、高质量提取质心用于脱靶量闭环;与“墨子号”星地量子密钥分发实验成码为92.9 kb,误码率为1.18%,能够实现高效率量子接收。
With the development of quantum secure communication networks and industrialization, there is an urgent need for lightweight and miniaturized receiving telescopes for scalable and portable multiple application scenario requirements of quantum tracking instruments. A detailed comparative analysis was performed on the technical systems that meet the requirements of receiving telescopes, the optical system form of the RC+micropixel+quantum module was determined, and the technical system of a small F#+micro pixel was adopted. An all-aluminum ,Φ,280 quantum tracker receiving telescope was designed. The optical design results of RC telescope of F5 were obtained. Using RSA-6061 microcrystalline aluminum alloy as the structural material for the telescope mirror, coupled with an integrated hard aluminum alloy of high-rigidity structure, the static (gravity and temperature deformation) simulation analysis results met the requirements of near-diffraction limit imaging and high-efficiency quantum reception. The dynamic simulation analysis results demonstrated that the first mode was 91 Hz, which had a sufficiently high dynamic stiffness and safety redundancy. The integration test results show that: The wave aberration RMS of the central field of view of the telescope is λ/14.7, and the wavefront aberration of the five field of view systems is better than λ/12.7, which ensured high-quality beacon imaging near the diffraction limit. The measured optical transfer function at Nyquist frequency is 0.15; The average polarization contrast of the four polarization states (HV+,-,) of the telescope is 454, along with an overall system efficiency of 51.93%, which allows high-quality quantum key reception; The experimental results of external stellar imaging at 25 and +30 ℃ verified the stability of the system, which can be used for high-quality centroid extraction for off-target closed loop; The QKD experiment with Mozi obtains 92.9 kb codes, and the total bit error rate is 1. 18%, allowing high-efficiency quantum reception.
量子通信轻小型量子跟踪仪高刚性量子密钥分发
quantum communicationlightweight and miniaturizedquantum trackerhigh rigidityquantum key distribution
YANG K X, ABULIZI M, LI Y H, et al. Single-mode fiber coupling with a M-SPGD algorithm for long-range quantum communications[J]. Optics Express, 2020, 28(24): 36600-36610. doi: 10.1364/oe.411939http://dx.doi.org/10.1364/oe.411939
CAO Y, LI Y H, YANG K X, et al. Long-distance free-space measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2020, 125(26): 260503. doi: 10.1103/physrevlett.125.260503http://dx.doi.org/10.1103/physrevlett.125.260503
SANTANA-ROS T, MICHELI M, FAGGIOLI L, et al. Orbital stability analysis and photometric characterization of the second Earth Trojan asteroid 2020 XL5[J]. Nature Communications, 2022, 13: 447. doi: 10.1038/s41467-022-27988-4http://dx.doi.org/10.1038/s41467-022-27988-4
NAUERTH S, MOLL F, RAU M, et al. Air to ground quantum key distribution[J]. Quantum Communications and Quantum Imaging X, 2012, 8518: 85180D. doi: 10.1117/12.929790http://dx.doi.org/10.1117/12.929790
MOLL F, NAUERTH S, FUCHS C, et al. Communication system technology for demonstration of BB84 quantum key distribution in optical aircraft downlinks[C]. SPIE Proceedings, Laser Communication and Propagation through the Atmosphere and Oceans. San Diego, California, USA. SPIE, 2012. doi: 10.1117/12.929739http://dx.doi.org/10.1117/12.929739
YIN J, REN J G, LU H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 2012, 488(7410): 185-188. doi: 10.1038/nature11332http://dx.doi.org/10.1038/nature11332
费强, 邓永停, 王雪峰, 等. 星地量子跟踪仪的跟瞄控制系统[J]. 光学 精密工程, 2022, 30(24):3178-3188. doi: 10.37188/ope.20223024.3178http://dx.doi.org/10.37188/ope.20223024.3178
FEI Q, DENG Y T, WANG X F, et al. Tracking and aiming control system for satellite earth quantum tracker[J]. Optics and Precision Engineering, 2022, 30(24):3178-3188.(in Chinese). doi: 10.37188/ope.20223024.3178http://dx.doi.org/10.37188/ope.20223024.3178
金光, 张亮, 胡福生. 大F数高分辨率空间望远镜光学系统[J]. 光学 精密工程, 2007, 15(2):155-159. doi: 10.3321/j.issn:1004-924X.2007.02.002http://dx.doi.org/10.3321/j.issn:1004-924X.2007.02.002
JIN G, ZHANG L, HU F SH. Investigation on space optical system of high F number and high resolution[J]. Optics and Precision Engineering, 2007, 15(2):155-159.(in Chinese). doi: 10.3321/j.issn:1004-924X.2007.02.002http://dx.doi.org/10.3321/j.issn:1004-924X.2007.02.002
张刘, 郑潇逸, 张帆, 等. 大容差多柔性透镜组结构优化设计[J]. 吉林大学学报(工学版), 2021, 51(2): 478-485. doi: 10.13229/j.cnki.jdxbgxb20200053http://dx.doi.org/10.13229/j.cnki.jdxbgxb20200053
ZHANG L, ZHENG X Y, ZHANG F, et al. Structural optimization design of large tolerance multi-flexible lens group[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 478-485.(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20200053http://dx.doi.org/10.13229/j.cnki.jdxbgxb20200053
梁瑞虹, 赵盖, 陈宁, 等. 超声电机宽温域低损耗压电与摩擦功能材料[J]. 光学 精密工程, 2020, 28(4):771-781. doi: 10.3788/OPE.20202804.0771http://dx.doi.org/10.3788/OPE.20202804.0771
LIANG R H, ZHAO G, CHEN N, et al. Wide-temperature-range and low-loss piezoelectric and friction functional materials of ultrasonic motor[J]. Optics and Precision Engineering, 2020, 28(4):771-781.(in Chinese). doi: 10.3788/OPE.20202804.0771http://dx.doi.org/10.3788/OPE.20202804.0771
李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学(中英文), 2022, 15(1):65-71. doi: 10.37188/co.2021-0127http://dx.doi.org/10.37188/co.2021-0127
LI H SH, LI B, LI H CH, et al. Optical design of a wide-spectrum ultraviolet imager based on a single material[J]. Chinese Journal of Optics, 2022, 15(1):65-71. (in Chinese). doi: 10.37188/co.2021-0127http://dx.doi.org/10.37188/co.2021-0127
李文雄, 申军立, 张星祥, 等. 低温红外离轴三反准直系统设计[J]. 光学 精密工程, 2023, 31(9): 1285-1294. doi: 10.37188/OPE.20233109.1285http://dx.doi.org/10.37188/OPE.20233109.1285
LI W X, SHEN J L, ZHANG X X, et al. Design of low temperature infrared off-axis three-mirror collimation system[J]. Optics and Precision Engineering, 2023, 31(9): 1285-1294.(in Chinese). doi: 10.37188/OPE.20233109.1285http://dx.doi.org/10.37188/OPE.20233109.1285
赵永强, 张景程, 乔新博. 基于偏振权重局部对比度的目标检测[J]. 红外与毫米波学报, 2023, 42(1):102-110. doi: 10.11972/j.issn.1001-9014.2023.01.013http://dx.doi.org/10.11972/j.issn.1001-9014.2023.01.013
ZHAO Y Q, ZHANG J CH, QIAO X B. Object detection based on polarization-weighted local contrast method[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1):102-110. (in Chinese). doi: 10.11972/j.issn.1001-9014.2023.01.013http://dx.doi.org/10.11972/j.issn.1001-9014.2023.01.013
柳鸣, 杨文波, 刘德龙, 等. 基于星图匹配脱靶量标定的移动测站望远镜指向修正技术[J]. 红外与激光工程, 2023, 52(5): 3788/IRLA20220813.
LIU M, YANG W B, LIU D L, et al. Pointing correction technology of telescope of mobile tracking station based on star pattern matching deviation calibration[J]. Infrared and Laser Engineering, 2023, 52(5): 3788/IRLA20220813.(in Chinese)
0
Views
8
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution