1.中山大学 物理与天文学院,广东 珠海 519082
2.中山大学·深圳 先进制造学院,广东 深圳 518033
扫 描 看 全 文
赵子菁,刘彦甫,赵宏超等.基于复合轴控制原理的卫星新型姿态稳定性调控[J].光学精密工程,2023,31(23):3438-3448.
ZHAO Zijing,LIU Yanfu,ZHAO Hongchao,et al.Pointing stability control method for super stable satellite based on composite axis control[J].Optics and Precision Engineering,2023,31(23):3438-3448.
赵子菁,刘彦甫,赵宏超等.基于复合轴控制原理的卫星新型姿态稳定性调控[J].光学精密工程,2023,31(23):3438-3448. DOI: 10.37188/OPE.20233123.3438.
ZHAO Zijing,LIU Yanfu,ZHAO Hongchao,et al.Pointing stability control method for super stable satellite based on composite axis control[J].Optics and Precision Engineering,2023,31(23):3438-3448. DOI: 10.37188/OPE.20233123.3438.
为减小无拖曳卫星的残余姿态误差,设计了一种基于动量交换的指向稳定性调控机构。采用复合轴控制的原理,与无拖曳姿态控制回路相配合,可将卫星的指向稳定性精度提高到纳弧度量级,同时减少工质损耗,达到延长卫星寿命的目的。利用压电陶瓷设计了一套敏感轴动量交换机构,并基于卫星姿态动力学对小质量块运动所产生的附加干扰力矩进行推导和分析。分别对复合轴系统的主轴系统和子轴系统进行整定,计算出满足性能需求的系统带宽。采用前馈逆模型和自适应PID控制对压电陶瓷的非线性和卫星所受扰动进行补偿。最后,通过Adams和Simulink联合仿真验证系统整体的可行性。仿真结果表明:该机构的介入可以有效降低控制系统带宽,实现10 nrad·Hz,-1/2,@1 mHz~1 Hz的指向稳定性控制。
To reduce the residual attitude error of the drag-free satellite, a pointing stability control mechanism based on momentum exchange was designed. To realize nanoradian-level pointing stability accuracy for the satellite, a composite axis control method was implemented. This method work in conjunction with the drag-free attitude control loop, simultaneously reducing the consumption of working fluid in other actuators. This approach was designed to extend the satellite's operational lifespan. Firstly, the design incorporated a linear reciprocating mechanism driven by piezoelectric ceramics on the satellite. This setup allowed for the derivation and analysis of additional interference torque, which resulted from the movement of small masses. The analysis was grounded in the principles of satellite attitude dynamics. Secondly, the composite axis system's main and auxiliary axes were individually tuned, and the system's bandwidth was calculated to ensure it meets performance requirements. Following this, a feed-forward inverse model and adaptive PID control were employed. These techniques compensated for the nonlinearity of the piezoelectric ceramics and any disturbances affecting the satellites. Finally, the feasibility of the overall system was verified by an Adams and Simulink joint simulation. The simulation results show that the intervention of the mechanism can effectively reduce the bandwidth of the control system and realize high-precision pointing stability control of approximately 10 nrad·Hz,-1/2,@1 mHz~1 Hz.
无拖曳卫星复合轴控制姿态稳定性压电陶瓷
drag-free satellitecomposite axis controlattitude stabilizationpiezoelectric ceramics
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010http://dx.doi.org/10.1088/0264-9381/33/3/035010
CLAPP B, SILLS J, VOORHEES C. Hubble space telescope pointing performance due to micro-dynamic disturbances from the NICMOS cryogenic cooler[C]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado. Reston: AIAA, 2002. doi: 10.2514/6.2002-1249http://dx.doi.org/10.2514/6.2002-1249
HE L, CHEN X, KUMAR K D,et al. A novel three-axis attitude stabilization method using in-plane internal mass-shifting[J]. Aerospace Science and Technology, 2019, 92: 489-500. doi: 10.1016/j.ast.2019.06.019http://dx.doi.org/10.1016/j.ast.2019.06.019
CHESI S, GONG Q, ROMANO M. Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(7): 1613-1626. doi: 10.2514/1.g002460http://dx.doi.org/10.2514/1.g002460
陆正亮, 张翔, 于永军, 等. 立方体卫星质量矩姿态控制建模与布局优化[J]. 系统工程与电子技术, 2017, 39(3):599-605. doi: 10.3969/j.issn.1001-506X.2017.03.21http://dx.doi.org/10.3969/j.issn.1001-506X.2017.03.21
LU ZH L, ZHANG X, YU Y J, et al. Mass moment control modeling and layout optimization for CubeSat[J]. Systems Engineering and Electronics, 2017, 39(3):599-605.(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.03.21http://dx.doi.org/10.3969/j.issn.1001-506X.2017.03.21
姜宇, 姚郁, 贺风华. 一种质量矩飞行器配置方案及其控制问题分析[J]. 系统工程与电子技术, 2008, 30(2):320-323. doi: 10.3321/j.issn:1001-506X.2008.02.031http://dx.doi.org/10.3321/j.issn:1001-506X.2008.02.031
JIANG Y, YAO Y, HE F H. Scheme of mass moment spacecraft and it's control problem[J]. Systems Engineering and Electronics, 2008, 30(2):320-323. (in Chinese). doi: 10.3321/j.issn:1001-506X.2008.02.031http://dx.doi.org/10.3321/j.issn:1001-506X.2008.02.031
HA K Q, FEMIANO M D, MOSIER G E. Minimum-time and vibration-avoidance attitude maneuver for spacecraft with torque and momentum limit constraints in redundant reaction wheel configuration[C]. Optical Science and Technology, the SPIE 49th Annual Meeting. Proc SPIE 5528, Space Systems Engineering and Optical Alignment Mechanisms, Denver, Colorado, USA. 2004, 5528: 126-137. doi: 10.1117/12.558456http://dx.doi.org/10.1117/12.558456
邓剑峰, 蔡志鸣, 陈琨, 等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学, 2019, 12(3):503-514. doi: 10.3788/co.20191203.0503http://dx.doi.org/10.3788/co.20191203.0503
DENG J F, CAI ZH M, CHEN K, et al. Drag-free control and its application in China's space gravitational wave detection[J]. Chinese Journal of Optics, 2019, 12(3):503-514. (in Chinese). doi: 10.3788/co.20191203.0503http://dx.doi.org/10.3788/co.20191203.0503
任海. 微小冷气推进技术的应用现状和发展[J]. 控制工程(北京), 2003(5): 10-19.
REN H. Application status and development of micro air-conditioning propulsion technology [J]. Control Engineering, 2003(5):10-19. ( in Chinese)
华冰, 陈林, 吴云华. 微小卫星联合执行机构的递阶饱和姿态控制方法[J]. 中国惯性技术学报, 2017, 25(6):821-827. doi: 10.13695/j.cnki.12-1222/o3.2017.06.022http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2017.06.022
HUA B, CHEN L, WU Y H. Cascade-saturation attitude control of micro-satellite based on combination actuator[J]. Journal of Chinese Inertial Technology, 2017, 25(6):821-827.(in Chinese). doi: 10.13695/j.cnki.12-1222/o3.2017.06.022http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2017.06.022
魏鹏鑫, 高长生, 荆武兴. 质量矩控制飞行器的压心不确定性问题研究[J]. 航天控制, 2012, 30(2):39-45. doi: 10.3969/j.issn.1006-3242.2012.02.008http://dx.doi.org/10.3969/j.issn.1006-3242.2012.02.008
WEI P X, GAO CH SH, JING W X. The research on the uncertainty of pressure center for moving mass actuated vehicle[J]. Aerospace Control, 2012, 30(2):39-45.(in Chinese). doi: 10.3969/j.issn.1006-3242.2012.02.008http://dx.doi.org/10.3969/j.issn.1006-3242.2012.02.008
肖磊, 王绍举, 常琳, 等. 采用自适应无迹卡尔曼滤波的卫星姿态确定[J]. 光学 精密工程, 2021, 29(3):637-645. doi: 10.37188/OPE.20212903.0637http://dx.doi.org/10.37188/OPE.20212903.0637
XIAO L, WANG SH J, CHANG L, et al. Attitude determination for satellite using adaptive unscented Kalman filter[J]. Opt. Precision Eng., 2021, 29(3):637-645.(in Chinese). doi: 10.37188/OPE.20212903.0637http://dx.doi.org/10.37188/OPE.20212903.0637
ADRIAENS H J M T S, DE KONING W L, BANNING R. Modeling piezoelectric actuators[J]. ASME Transactions on Mechatronics, 2000, 5(4): 331-341. doi: 10.1109/3516.891044http://dx.doi.org/10.1109/3516.891044
RAKOTONDRABE M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 428-431. doi: 10.1109/tase.2010.2081979http://dx.doi.org/10.1109/tase.2010.2081979
黄涛, 罗治洪, 陶桂宝, 等. 压电定位平台Hammerstein建模与反馈线性化控制[J]. 光学 精密工程, 2022, 30(14): 1716-1724. doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
HUANG T, LUO ZH H, TAO G B, et al. Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J]. Opt. Precision Eng., 2022, 30(14): 1716-1724.(in Chinese). doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
傅承毓, 马佳光, 叶步霞, 等. 复合轴控制系统应用研究[J]. 光电工程, 1998, 25(4):1-12.
FU C Y, MA J G, YE B X, et al. The application research of the composite axis control system[J]. Opto-Electronic Engineering, 1998, 25(4):1-12.(in Chinese)
杨晓霞,孟浩然,张斌,等.大型光,电系统精跟踪带宽设计方法研究[J].电子测量与仪器学报,2014,28(12):1382-1388. doi: 10.13382/j.jemi.2014.12.012http://dx.doi.org/10.13382/j.jemi.2014.12.012
YANG X X, MENG H R, ZHANG B, Bandwidth design for fine tracking loop of large opto-electronic system[J]. Journal of Electronic Measurement and Instrumentation, 2014,28(12):1382-1388. (in Chinese). doi: 10.13382/j.jemi.2014.12.012http://dx.doi.org/10.13382/j.jemi.2014.12.012
杨晓霞, 孟浩然, 张斌, 等. 大型光电系统精跟踪带宽设计方法研究[J]. 电子测量与仪器学报, 2014, 28(12): 1382-1388.
YANG X X, MENG H R, ZHANG B, et al. Bandwidth design for fine tracking loop of large opto-electronic system[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(12): 1382-1388.(in Chinese)
苟兴宇, 王丽娇, 李明群, 等. 天琴一号卫星加速度模式无拖曳控制[J]. 宇航学报, 2021, 42(5): 603-610. doi: 10.3873/j.issn.1000-1328.2021.05.007http://dx.doi.org/10.3873/j.issn.1000-1328.2021.05.007
GOU X Y, WANG L J, LI M Q, et al. Acceleration mode drag-free control of TQ-1 satellite[J]. Journal of Astronautics, 2021, 42(5): 603-610.(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.05.007http://dx.doi.org/10.3873/j.issn.1000-1328.2021.05.007
刘锡民, 刘立人, 孙建锋, 等. 星间激光通信中复合轴系统的带宽设计研究[J]. 光学学报, 2006, 26(1):101-106. doi: 10.3321/j.issn:0253-2239.2006.01.020http://dx.doi.org/10.3321/j.issn:0253-2239.2006.01.020
LIU X M, LIU L R, SUN J F, et al. Bandwidth design of composite axis system in satellite laser communication[J]. Acta Optica Sinica, 2006, 26(1):101-106.(in Chinese). doi: 10.3321/j.issn:0253-2239.2006.01.020http://dx.doi.org/10.3321/j.issn:0253-2239.2006.01.020
0
Views
7
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution