1.中国科学院 长春光学精密机械与物理研究所 光学系统先进制造技术重点实验室, 吉林 长春 130033
2.中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
扫 描 看 全 文
李伟,张舸,崔聪聪等.氧化时间对增材制造碳化硅性能提升的作用机制[J].光学精密工程,2023,31(23):3449-3456.
LI Wei,ZHANG Ge,CUI Congcong,et al.Mechanism analysis of oxidation time on performance improvement of additive manufacturing silicon carbide[J].Optics and Precision Engineering,2023,31(23):3449-3456.
李伟,张舸,崔聪聪等.氧化时间对增材制造碳化硅性能提升的作用机制[J].光学精密工程,2023,31(23):3449-3456. DOI: 10.37188/OPE.20233123.3449.
LI Wei,ZHANG Ge,CUI Congcong,et al.Mechanism analysis of oxidation time on performance improvement of additive manufacturing silicon carbide[J].Optics and Precision Engineering,2023,31(23):3449-3456. DOI: 10.37188/OPE.20233123.3449.
增材制造结合反应烧结技术能够制备高度轻量化的碳化硅陶瓷反射镜,针对增材制造技术制备的碳化硅陶瓷存在抗弯强度低、弹性模量低等力学性能差的问题,开展高温氧化提升材料力学性能的研究。对基于增材制造的反应烧结碳化硅陶瓷试样在850 ℃下进行高温氧化处理,研究氧化时间对材料成分及表面缺陷含量的影响,阐明氧化时间对材料性能的提升机制,揭示它对材料性能的影响规律。实验结果表明:当氧化时间为2 h时,材料表面原位生长一层致密的氧化硅膜层,该膜层能够使材料表面缺陷自愈合,有效降低陶瓷材料表面缺陷的含量,此时材料获得最佳的力学性能,抗弯强度和弹性模量分别为263.9 MPa和384.75 GPa,分别提升10.7%和14.4%。该方法具有高效率、低成本和易操作的优势,为增材制造碳化硅陶瓷的性能优化提供理论指导。
Additive manufacturing combined with reactive sintering can be used to fabricate extremely lightweight silicon carbide ceramic mirrors. However, the mechanical properties of silicon carbide prepared by this method, such as flexural strength and elastic modulus, are low and insufficient. A novel method was proposed to improve the properties of silicon carbide by high temperature oxidation. First, silicon carbide prepared by additive manufacturing and reactive sintering was oxidized at 850 ℃. Thereafter, the effect of oxidation time on material composition and surface defect content was studied. The enhancement mechanism of oxidation time on the properties of silicon carbide was elucidated. The results demonstrate that when the oxidation time is 2 h, a dense silica film is in-situ grown on the surface of the material, which can render the surface defects of the material to self-heal and effectively reduce their contents. In addition, the final body obtained the best comprehensive properties by this method, and the flexural strength and elastic modulus are 263.9 MPa and 384.75 GPa, with increments of 10.7% and 14.4%, respectively. This method has the advantages of high efficiency, low cost, and easy operation. The study provides theoretical guidance for improving the performance of additive manufacturing silicon carbide ceramics.
增材制造反应烧结碳化硅氧化时间性能优化
additive manufacturingreaction-bonded silicon carbideoxidation timeproperties regulation
张斌智, 张舸, 董德义. 反应连接230 mm口径RB-SiC反射镜[J]. 光学 精密工程, 2012, 20(11):2360-2364. doi: 10.3788/ope.20122011.2360http://dx.doi.org/10.3788/ope.20122011.2360
ZHANG B ZH, ZHANG G, DONG D Y. 230 mm aperture RB-SiC mirror by reaction-formed joint[J]. Opt. Precision Eng., 2012, 20(11):2360-2364. (in Chinese). doi: 10.3788/ope.20122011.2360http://dx.doi.org/10.3788/ope.20122011.2360
张舸. 1.5 m量级SiC陶瓷素坯凝胶注模成型工艺[J]. 光学 精密工程, 2013, 21(12):2989-2993. doi: 10.3788/ope.20132112.2989http://dx.doi.org/10.3788/ope.20132112.2989
ZHANG G. Gelcasting process of 1.5 m SiC ceramic green body[J]. Opt. Precision Eng., 2013, 21(12):2989-2993.(in Chinese). doi: 10.3788/ope.20132112.2989http://dx.doi.org/10.3788/ope.20132112.2989
凤良杰, 成鹏飞, 王炜. Φ450 mm口径空间天文相机轻量化碳化硅主反射镜组件设计[J]. 红外与激光工程, 2021, 50(2): 3788/IRLA20200175. doi: 10.3788/IRLA20200175http://dx.doi.org/10.3788/IRLA20200175
FENG L J, CHENG P F, WANG W. Design of lightweight silicon carbide primary reflector assembly for Φ450 mm space astronomical camera[J]. Infrared and Laser Engineering, 2021, 50(2): 3788/IRLA20200175.(in Chinese). doi: 10.3788/IRLA20200175http://dx.doi.org/10.3788/IRLA20200175
LI W, CUI C C, BAO J X, et al. Properties regulation of SiC ceramics prepared via stereolithography combined with reactive melt infiltration techniques[J]. Ceramics International, 2021, 47(24): 33997-34004. doi: 10.1016/j.ceramint.2021.08.307http://dx.doi.org/10.1016/j.ceramint.2021.08.307
ECKEL Z C, ZHOU C Y, MARTIN J H, et al. Additive manufacturing of polymer-derived ceramics[J]. Science, 2016, 351(6268): 58-62. doi: 10.1126/science.aad2688http://dx.doi.org/10.1126/science.aad2688
王上, 张星祥, 朱俊青. 空间相机全铝合金光机结构的设计与分析[J]. 红外技术, 2022, 44(4):364-370. doi: 10.11846/j.issn.1001-8891.2022.4.hwjs202204006http://dx.doi.org/10.11846/j.issn.1001-8891.2022.4.hwjs202204006
WANG SH, ZHANG X X, ZHU J Q. Design and analysis of all aluminum alloy optical mechanical structure of space cameras[J]. Infrared Technology, 2022, 44(4):364-370.(in Chinese). doi: 10.11846/j.issn.1001-8891.2022.4.hwjs202204006http://dx.doi.org/10.11846/j.issn.1001-8891.2022.4.hwjs202204006
FENG K H, HU S D, LI L Y, et al. Preparation of low residual silicon content Si-SiC ceramics by binder jetting additive manufacturing and liquid silicon infiltration[J]. Journal of the European Ceramic Society, 2023, 43(13): 5446-5457. doi: 10.1016/j.jeurceramsoc.2023.05.038http://dx.doi.org/10.1016/j.jeurceramsoc.2023.05.038
LI F F, MA N N, CHEN J, et al. SiC ceramic mirror fabricated by additive manufacturing with material extrusion and laser cladding[J]. Additive Manufacturing, 2022, 58: 102994. doi: 10.1016/j.addma.2022.102994http://dx.doi.org/10.1016/j.addma.2022.102994
LI W, GUO C H, CUI C C, et al. Microstructure evolution and performance improvement of silicon carbide ceramics via impregnation method[J]. Materials, 2022, 15(5): 1717. doi: 10.3390/ma15051717http://dx.doi.org/10.3390/ma15051717
ZHANG H, YANG Y, HU K H, et al. Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics[J]. Additive Manufacturing, 2020, 34: 101199. doi: 10.1016/j.addma.2020.101199http://dx.doi.org/10.1016/j.addma.2020.101199
CHEN X, YIN J, HUANG L Z, et al. Microstructural tailoring, mechanical and thermal properties of SiC composites fabricated by selective laser sintering and reactive melt infiltration[J]. Journal of Advanced Ceramics, 2023, 12(4): 830-847. doi: 10.26599/jac.2023.9220724http://dx.doi.org/10.26599/jac.2023.9220724
OH J W, PARK J, NAHM S, et al. SiC-Si composite part fabrication via SiC powder binder jetting additive manufacturing and molten-Si infiltration[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105686. doi: 10.1016/j.ijrmhm.2021.105686http://dx.doi.org/10.1016/j.ijrmhm.2021.105686
SHI Z A, WU J M, FANG Z Q, et al. Influence of high-temperature oxidation of SiC powders on curing properties of SiC slurry for digital light processing[J]. Journal of Advanced Ceramics, 2023, 12(1): 169-181. doi: 10.26599/jac.2023.9220675http://dx.doi.org/10.26599/jac.2023.9220675
耿林, 吴昆, 刘庆, 等. β-SiC晶须的形貌和微观结构[J]. 硅酸盐学报, 1991, 19(6): 543-548.
GENG L, WU K, LIU Q, et al. Morphology and microstructure of β-sic whisker[J]. Journal of the Chinese Ceramic Society, 1991, 19(6): 543-548.(in Chinese)
王亚茹, 李英杰, 邹莱, 等. RB-SiC金刚石磨粒柔性刻划材料去除及表面损伤行为[J]. 光学 精密工程, 2022, 30(14): 1704-1715. doi: 10.37188/ope.20223014.1704http://dx.doi.org/10.37188/ope.20223014.1704
WANG Y R, LI Y J, ZOU L, et al. Material removal and surface damage behavior of diamond grain for flexible scribing RB-SiC[J]. Opt. Precision Eng., 2022, 30(14): 1704-1715. (in Chinese). doi: 10.37188/ope.20223014.1704http://dx.doi.org/10.37188/ope.20223014.1704
SONG M X, PENG K. Pre-oxidization of SiC on interfacial structure and mechanical properties of SiCp/Al composites prepared by vacuum-pressure infiltration[J]. Journal of Materials Research and Technology, 2023, 24: 6567-6577. doi: 10.1016/j.jmrt.2023.04.246http://dx.doi.org/10.1016/j.jmrt.2023.04.246
YANG L W, YE ZH Y, WANG CH Y, et al. Nanoindentation deformation and fracture mechanisms of SiC/SiO2 thermally oxidized in plasma wind tunnel[J]. Thin Solid Films, 2023, 768: 139715. doi: 10.1016/j.tsf.2023.139715http://dx.doi.org/10.1016/j.tsf.2023.139715
MEYERS S, LEERSNIJDER L D, VLEUGELS J, et al. Direct laser sintering of reaction bonded silicon carbide with low residual silicon content[J]. Journal of the European Ceramic Society, 2018, 38(11): 3709-3717. doi: 10.1016/j.jeurceramsoc.2018.04.055http://dx.doi.org/10.1016/j.jeurceramsoc.2018.04.055
0
Views
7
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution