1.天津工业大学 机械工程学院,天津 300387
2.北京清航紫荆装备科技有限公司,北京 102101
3.清华大学 航天航空学院,北京 100084
4.内蒙古工业大学 航空学院,呼和浩特 010051
扫 描 看 全 文
席鹏航,李京阳,印明威等.视觉辅助的交叉双旋翼无人直升机自主降落控制系统[J].光学精密工程,2023,31(23):3517-3529.
XI Penghang,LI Jingyang,YIN Mingwei,et al.Intermeshing-rotor unmanned helicopter autonomous landing control system based on vision aid[J].Optics and Precision Engineering,2023,31(23):3517-3529.
席鹏航,李京阳,印明威等.视觉辅助的交叉双旋翼无人直升机自主降落控制系统[J].光学精密工程,2023,31(23):3517-3529. DOI: 10.37188/OPE.20233123.3517.
XI Penghang,LI Jingyang,YIN Mingwei,et al.Intermeshing-rotor unmanned helicopter autonomous landing control system based on vision aid[J].Optics and Precision Engineering,2023,31(23):3517-3529. DOI: 10.37188/OPE.20233123.3517.
为了使交叉双旋翼无人直升机在全球定位系统(Global Positioning System,GPS)信号干扰的情况下实现平稳的自主降落,采用AprilTags视觉基准系统中的TAG36H11图像作为降落地标,并基于该降落地标设计了一种视觉辅助的交叉双旋翼无人直升机自主降落控制系统。对降落地标进行图像预处理,基于Canny边缘检测、Hough变换直线检测和矩形检测,提取降落地标的特征信息,然后通过相机成像原理和坐标系转换解算出无人直升机的相对位姿信息,针对GPS信号干扰的情况下提出了一种利用Hough变换直线检测解算偏航角的算法,最后设计了一种串级PID控制结构的位姿控制算法,位置控制中设计了一种开方控制器,用于限制无人直升机的极限期望位置和最大加速度。同时,在姿态控制中设计了一种交叉双旋翼无人直升机姿态控制机构,通过6个数字舵机控制倾斜盘的倾角实现交叉双旋翼的周期变距,改变无人直升机的飞行姿态。通过Mission Planner飞控地面站进行仿真验证,将视觉处理系统与飞行控制系统组合,仿真结果表明,视觉辅助的飞行控制系统可以很好地跟踪无人直升机的期望位置。经过实验验证,姿态角度偏移量控制在4°以内,位置偏移量控制在0.05 m以内,可以实现交叉双旋翼无人直升机视觉辅助的自主降落。
To achieve a smooth autonomous landing of the intermeshing-rotor unmanned helicopter in the presence of GPS signal interference, the TAG36H11 image from the AprilTags visual fiducial system was used as the landing landmark. A vision assisted autonomous landing control system for the intermeshing-rotor unmanned helicopter was designed based on this landmark. The process involved image pre-processing of the landing landmark, followed by the extraction of feature information using Canny edge detection, Hough transform straight line detection, and rectangle detection. The system then solved for the relative position and attitude of the unmanned helicopter using camera imaging principles and coordinate system conversion. An algorithm to determine the yaw angle using Hough transform linear detection was proposed, specifically for scenarios with GPS signal interference. The control system incorporated a cascade PID control structure, including a square root controller in position control to limit the desired position and maximum acceleration of the helicopter. In addition, an intermeshing-rotor unmanned helicopter attitude control mechanism was designed, which adjusted the cyclic pitch of the intermeshing-rotor by controlling the swashplate angle with six digital servos. This mechanism was pivotal in altering the flight attitude of unmanned helicopters. The system's effectiveness was verified through simulations with the Mission Planner flight control ground station, which combined the vision processing system with the flight control system. These simulations show that the vision-assisted flight control system can accurately track the desired position of the unmanned helicopter. After experimental verification, it is found that the attitude angle offset is controlled within 4° and the position offset within 0.05 m, demonstrating the system's capability to realize the intermeshing-rotor unmanned helicopter's vision-assisted autonomous landing.
视觉辅助无人直升机交叉双旋翼自主降落位置控制姿态控制
visual aidintermeshing-rotor unmanned helicopterautonomous landingposition controlattitude control
乔尔特. 独具特色的K-MAX“空中卡车”[J]. 直升机技术, 1997(1): 44-50.
QIAO E T. Unique K-MAX“Air Truck”[J]. Helicopter Technique, 1997(1): 44-50.(in Chinese)
WU Z X, HAN P, YAO R W, et al. Autonomous UAV landing system based on visual navigation[C]. 2019 IEEE International Conference on Imaging Systems and Techniques (IST). December 9-10, 2019. Abu Dhabi, United Arab Emirates. IEEE, 2019: 1-6.
王晓剑, 潘顺良, 宋子善, 等. 无人直升机自主着舰的计算机视觉技术[J]. 北京航空航天大学学报, 2007, 33(6): 686-689. doi: 10.3969/j.issn.1001-5965.2007.06.013http://dx.doi.org/10.3969/j.issn.1001-5965.2007.06.013
WANG X J, PAN SH L, SONG Z SH, et al. Computer vision scheme for autonomous landing of unmanned helicopter on ship deck[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 686-689.(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.06.013http://dx.doi.org/10.3969/j.issn.1001-5965.2007.06.013
钟映春, 张文祥, 王波, 等. 电力巡检无人机自主降落的引导系统与策略[J]. 光学 精密工程, 2022, 30(11):1362-1373. doi: 10.37188/ope.20223011.1362http://dx.doi.org/10.37188/ope.20223011.1362
ZHONG Y CH, ZHANG W X, WANG B, et al. Navigation system and strategies for electric inspecting UAV autonomously landing[J]. Optics and Precision Engineering, 2022, 30(11):1362-1373. (in Chinese). doi: 10.37188/ope.20223011.1362http://dx.doi.org/10.37188/ope.20223011.1362
张舸, 伊国兴, 高翔. 基于视觉导航的旋翼无人机自主降落系统[J]. 传感器与微系统, 2018, 37(9):77-80, 83.
ZHANG G, YI G X, GAO X. Autonomous landing system of rotor UAV based on visual navigation[J]. Transducer and Microsystem Technologies, 2018, 37(9):77-80, 83. (in Chinese)
李洪, 王大元, 明丽, 等. 基于线特征的无人机自主着陆惯性/视觉导航方法[J]. 中国惯性技术学报, 2021, 29(4):437-442.
LI H, WANG D Y, MING L, et al. Inertial/visual navigation method of UAV autonomous landing based on line features[J]. Journal of Chinese Inertial Technology, 2021, 29(4):437-442. (in Chinese)
任沁源, 李平, 韩波. 基于视觉信息的微型无人直升机位姿估计[J]. 浙江大学学报(工学版), 2009, 43(1): 18-22.
REN Q Y, LI P, HAN B. Position and attitude estimation of micro unmanned helicopter based on visual information[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(1): 18-22.(in Chinese)
蒋鸿翔, 徐锦法, 高正. 无人直升机视觉着陆中的运动状态估计算法[J]. 航空学报, 2010, 31(4): 744-753.
JIANG H X, XU J F, GAO ZH. Vision-based movement state estimation algorithm for unmanned helicopter landing[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 744-753.(in Chinese)
黄楠楠, 刘贵喜, 张音哲, 等. 无人机视觉导航算法[J]. 红外与激光工程, 2016, 45(7): 0726005. doi: 10.3788/IRLA201645.0726005http://dx.doi.org/10.3788/IRLA201645.0726005
HUANG N N, LIU G X, ZHANG Y ZH, et al. Unmanned aerial vehicle vision navigation algorithm[J]. Infrared and Laser Engineering, 2016, 45(7): 0726005.(in Chinese). doi: 10.3788/IRLA201645.0726005http://dx.doi.org/10.3788/IRLA201645.0726005
LEE D, RYAN T, KIM H J. Autonomous landing of a VTOL UAV on a moving platform using image-based visual servoing[C]. 2012 IEEE International Conference on Robotics and Automation. May 14-18, 2012. St Paul, MN, USA. IEEE, 2012: 971-976.
ZHAO Y, PEI H. An improved vision-based algorithm for unmanned aerial vehicles autonomous landing[J]. Physics Procedia, 2012, 33: 935-941. doi: 10.1016/j.phpro.2012.05.157http://dx.doi.org/10.1016/j.phpro.2012.05.157
PRAKASH R O, SARAVANAN C. Autonomous robust helipad detection algorithm using computer vision[C]. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). March 3-5, 2016. Chennai, India. IEEE, 2016: 2599-2604.
LI Z, CHEN Y, LU H, et al. UAV autonomous landing technology based on AprilTags vision positioning algorithm[C]. 2019 Chinese Control Conference (CCC). July 27-30, 2019. Guangzhou, China. IEEE, 2019: 8148-8153.
JUNG Y, LEE D J, BANG H. Close-range vision navigation and guidance for rotary UAV autonomous landing[C]. 2015 IEEE International Conference on Automation Science and Engineering (CASE). August 24-28, 2015. Gothenburg, Sweden. IEEE, 2015: 342-347.
高九州, 贾宏光. 无人机自主着陆纵向控制律设计[J]. 光学 精密工程, 2016, 24(7):1799-1806. doi: 10.3788/ope.20162407.1799http://dx.doi.org/10.3788/ope.20162407.1799
GAO J ZH, JIA H G. Design of longitudinal control law for small fixed-wing UAV during auto landing[J]. Optics and Precision Engineering, 2016, 24(7):1799-1806. (in Chinese). doi: 10.3788/ope.20162407.1799http://dx.doi.org/10.3788/ope.20162407.1799
LANGE S, SÜNDERHAUF N, PROTZEL P. Autonomous landing for a multirotor UAV using vision[C]. International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2008), 2008: 482-491.
孟学斌, 齐咏生, 李永亭, 等. 基于视觉的四旋翼无人机自主降落算法研究[J]. 控制工程, 2020, 27(10): 1751-1759.
MENG X B, QI Y SH, LI Y T, et al. Study on autonomous landing system of quadrotor UAV based on vision[J]. Control Engineering of China, 2020, 27(10): 1751-1759.(in Chinese)
SARIPALLI S, MONTGOMERY J F, SUKHATME G S. Vision-based autonomous landing of an unmanned aerial vehicle[C]. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292). Washington, DC, USA. IEEE, 2002, 3: 2799-2804. doi: 10.1109/tra.2003.810239http://dx.doi.org/10.1109/tra.2003.810239
ANITHA G, KUMAR R N G. Vision based autonomous landing of an unmanned aerial vehicle[J]. Procedia Engineering, 2012, 38: 2250-2256. doi: 10.1016/j.proeng.2012.06.271http://dx.doi.org/10.1016/j.proeng.2012.06.271
倪麟. 基于Otsu理论的图像分割算法的研究[D]. 重庆: 重庆大学, 2013.
NI L. Research on Image Segmentation Algorithm Based on Otsu Theory[D]. Chongqing: Chongqing University, 2013. (in Chinese)
KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337. doi: 10.1109/tip.2010.2040763http://dx.doi.org/10.1109/tip.2010.2040763
王利华, 李亮亮, 郭恒林. 基于目标的相机标定方法[J]. 北京测绘, 2021, 35(3):372-375.
WANG L H, LI L L, GUO H L. A target-based calibration method[J]. Beijing Surveying and Mapping, 2021, 35(3):372-375.(in Chinese)
0
Views
7
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution