1.兰州理工大学 机电工程学院,甘肃 兰州 730000
2.兰州理工大学 有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730000
3.大连理工大学 机械工程学院,辽宁 大连 116024
4.大连理工大学 宁波研究院,浙江 宁波 315016
扫 描 看 全 文
王有良,高熙淳,张文娟等.磁性复合流体抛光过程中水分对抛光性能的影响[J].光学精密工程,2023,31(24):3559-3569.
WANG Youliang,GAO Xichun,ZHANG Wenjuan,et al.Influence of water in magnetic compound fluid on polishing performance[J].Optics and Precision Engineering,2023,31(24):3559-3569.
王有良,高熙淳,张文娟等.磁性复合流体抛光过程中水分对抛光性能的影响[J].光学精密工程,2023,31(24):3559-3569. DOI: 10.37188/OPE.20233124.3559.
WANG Youliang,GAO Xichun,ZHANG Wenjuan,et al.Influence of water in magnetic compound fluid on polishing performance[J].Optics and Precision Engineering,2023,31(24):3559-3569. DOI: 10.37188/OPE.20233124.3559.
磁性复合流体(Magnetic Compound Fluid,MCF)具有优异的抛光性能,然而MCF抛光液中的水分在抛光过程中流失,抛光性能随之降低,这将增加抛光成本并严重影响MCF抛光的工程应用。针对磁性复合流体抛光液在抛光过程中水分流失的问题,探究了抛光过程中MCF水分含量对MCF形貌特征、抛光区域温度、正压力与抛光质量的关系,构建MCF中水分对抛光质量的影响机理。首先,分析了抛光过程中不同水分占比抛光液对抛光性能的影响规律,采用工业相机观察MCF抛光液抛光前后的形貌特征。然后,通过总结抛光过程温升-磁流体状态-抛光作用力-抛光质量的内在联系,构建不同水分含量MCF的抛光机理。最后,通过向MCF抛光液中定量补充水分,有效地缓解了MCF抛光液抛光效果降低的问题。实验结果表明:(1)当MCF抛光液水分占比为45%时初始抛光效果较好,抛光10 min内工件的表面粗糙度由0.410 μm下降到0.007 μm;而使用已持续抛光50 min的MCF加工10 min后工件的表面粗糙度由0.576 μm下降到0.173 μm。MCF随着抛光时间的增加MCF抛光性能大幅下降;(2)随着抛光液中含水量的降低,抛光时磁性颗粒形成的链状结构恢复能力变差,进而影响其抛光性能;(3)在抛光过程中向MCF抛光液补充水分后,抛光结束时工件的表面粗糙度下降率由无添加时的69.97%提高至86.69%,材料去除率由0.95×10,8, μm,3,/min提升到1.45×10,8, μm,3,/min,抛光正压力由3.7 N提升到4.2 N。当抛光过程中补充水分,使MCF的水含量占比维持在45%左右时,可以保持其长效稳定的抛光能力,有效地延长MCF的使用寿命。
Magnetic compound fluids (MCFs) have been shown to exhibit excellent polishing performance. However, problems with water wastage in MCF slurries during the polishing process can deteriorate their performance. This increases the costs of polishing using MCF slurries significantly, which substantially limits the application of MCF polishing technology. To address the issue of water loss in an MCF slurry, the relationships between the MCF's water content and the morphology, polishing temperature, normal pressure, and polishing quality of the MCF were investigated. The mechanism of the influence of moisture on polishing quality was also evaluated. First, the influences of different water content levels on the polishing properties of the fluid were analyzed. Additionally, the morphological characteristics of the MCF slurry before and after polishing were observed using industrial cameras. Then, the polishing mechanism of the MCF with varying water contents was examined by summarizing the internal relationship between temperature increases, the state of the MCF, and the force exerted in the polishing process as well as the quality of the resulting surface. Finally, the shortened lifespan of the MCF slurry was effectively alleviated by adding water. The following key results were obtained. (1) The initial polishing was better when the water content of the MCF polishing liquid was maintained at 45%. After 10 min of polishing, the surface roughness of the workpiece decreased from 0.410 μm to 0.007 μm using the initial MCF slurry. In contrast, it decreased from 0.576 μm to 0.173 μm using the MCF slurry that had been used for 50 min. The polishing performance of the MCF significantly decreased with increasing polishing time. (2) The ability of the MCF to recover worsened with decreasing water content in the slurry, which in turn affected its polishing performance. (3) The rate of decrease of the roughness of the polished surface after 60 min of polishing increased from 69.97% initially to 86.69% after adding water to the MCF slurry. The rate at which material was removed increased from 0.95×10,8, μm,3,/min to 1.45×10,8, μm,3,/min, and the normal force of the polishing increased from 3.7 N to 4.2 N. When water is added to an MCF slurry during the polishing process, maintaining a water content of approximately 45% can improve the long-term stable polishing ability of the slurry and extend the service life of the MCF effectively.
磁性复合流体抛光温度抛光性能表面粗糙度材料去除率
magnetic compound fluidpolishing temperaturepolishing performancesurface roughnessmaterial removal rate
王承遇, 李松基, 陶瑛, 等. 超光滑超精密玻璃抛光新技术[J]. 玻璃, 2009, 36(10): 33-37. doi: 10.3969/j.issn.1003-1987.2009.10.012http://dx.doi.org/10.3969/j.issn.1003-1987.2009.10.012
WANG C Y, LI S J, TAO Y, et al. New super-smooth and super-precision polishing technology for glass surface[J]. Glass, 2009, 36(10): 33-37.(in Chinese). doi: 10.3969/j.issn.1003-1987.2009.10.012http://dx.doi.org/10.3969/j.issn.1003-1987.2009.10.012
张韬, 何建国, 黄文, 等. 机械轴与虚拟轴复合的磁流变抛光[J]. 光学 精密工程, 2021, 29(2): 286-296. doi: 10.37188/OPE.20212902.0286http://dx.doi.org/10.37188/OPE.20212902.0286
ZHANG T, HE J G, HUANG W, et al. Magnetorheological finishing method that combines mechanical and virtual axes[J]. Opt. Precision Eng., 2021, 29(2): 286-296. (in Chinese). doi: 10.37188/OPE.20212902.0286http://dx.doi.org/10.37188/OPE.20212902.0286
李改灵. 光学材料磨削加工亚表面损伤测量的理论与实验研究[D]. 长沙: 国防科学技术大学, 2006.
LI G L. Theoretical and Experimental Research on the Measurement of Grinding Subsurface Damages for Optical Materials[D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
康桂文. 磁流变抛光技术的研究现状及其发展[J]. 机床与液压, 2008, 36(3): 173-175, 182. doi: 10.3969/j.issn.1001-3881.2008.03.058http://dx.doi.org/10.3969/j.issn.1001-3881.2008.03.058
KANG G W. Research and development of magnetorheological finishing[J]. Machine Tool & Hydraulics, 2008, 36(3): 173-175, 182(in Chinese). doi: 10.3969/j.issn.1001-3881.2008.03.058http://dx.doi.org/10.3969/j.issn.1001-3881.2008.03.058
赵卫, 豆立博, 刘玲. 磁流变抛光技术在SiC晶片加工工艺中的应用研究[J]. 价值工程, 2018, 37(11): 222-223.
ZHAO W, DOU L B, LIU L. Application research on magnetorheological finishing in the SiC wafer processing[J]. Value Engineering, 2018, 37(11): 222-223.(in Chinese)
姜晨, 时培兵, 李佳音, 等. 磁性复合流体分散性及其对BK7光学玻璃抛光性能的影响[J]. 光子学报, 2019, 48(5): 24-33. doi: 10.3788/gzxb20194805.0516004http://dx.doi.org/10.3788/gzxb20194805.0516004
JIANG C, SHI P B, LI J Y, et al. Dispersion of magnetic compound fluid and its effect on polishing properties of BK7 optical glass[J]. Acta Photonica Sinica, 2019, 48(5): 24-33.(in Chinese). doi: 10.3788/gzxb20194805.0516004http://dx.doi.org/10.3788/gzxb20194805.0516004
袁胜豪, 张云飞, 余家欣, 等. 磁流变抛光中表面彗尾状缺陷的生成与演变行为[J]. 光学 精密工程, 2021, 29(4): 740-748. doi: 10.37188/OPE.2020.0499http://dx.doi.org/10.37188/OPE.2020.0499
YUAN S H, ZHANG Y F, YU J X, et al. Formation and evolution behavior of comet-tail defects in magnetorheological finishing[J]. Opt. Precision Eng., 2021, 29(4): 740-748.(in Chinese). doi: 10.37188/OPE.2020.0499http://dx.doi.org/10.37188/OPE.2020.0499
张峰, 张斌智. 磁流体辅助抛光工件表面粗糙度研究[J]. 光学 精密工程, 2005, 13(1): 34-39. doi: 10.3321/j.issn:1004-924X.2005.01.007http://dx.doi.org/10.3321/j.issn:1004-924X.2005.01.007
ZHANG F, ZHANG B Z. Surface roughness of optical elements fabricated by magnetic fluid-assisted polishing[J]. Opt. Precision Eng., 2005, 13(1): 34-39.(in Chinese). doi: 10.3321/j.issn:1004-924X.2005.01.007http://dx.doi.org/10.3321/j.issn:1004-924X.2005.01.007
王嘉琪, 肖强. 磁流变抛光技术的研究进展[J]. 表面技术, 2019, 48(10): 317-328.
WANG J Q, XIAO Q. Research progress of magnetorheological polishing technology[J]. Surface Technology, 2019, 48(10): 317-328.(in Chinese)
SHIMADA K, AKAGAMI Y, KAMIYAMA S, et al. New microscopic polishing with magnetic compound fluid (MCF)[J]. Journal of Intelligent Material Systems and Structures, 2002, 13(7/8): 405-408. doi: 10.1106/104538902026159http://dx.doi.org/10.1106/104538902026159
叶卉, 李晓峰, 段朋云, 等. 光学元件磁性复合流体抛光特性研究[J]. 上海理工大学学报, 2021, 43(4): 342-348.
YE H, LI X F, DUAN P Y, et al. Magnetic compound fluid polishing characteristics of optical elements[J]. Journal of University of Shanghai for Science and Technology, 2021, 43(4): 342-348.(in Chinese)
WANG Y, WU Y, GUO H, et al. A new magnetic compound fluid slurry and its performance in magnetic field-assisted polishing of oxygen-free copper[J]. Journal of Applied Physics, 2015, 117(17). doi: 10.1063/1.4914058http://dx.doi.org/10.1063/1.4914058
ZHANG W J, ZHANG X J, WU Y B, et al. Experimental study on the polishing of aspheric surfaces on an S-136 mould steel using magnetic compound fluid slurries[J]. International Journal of Abrasive Technology, 2020, 10(3): 155. doi: 10.1504/ijat.2020.10034973http://dx.doi.org/10.1504/ijat.2020.10034973
郭会茹, 吴勇波, 焦黎, 等. Ni-P镀层的磁性混合流体抛光[J]. 机械工程学报, 2013, 49(17): 73-78. doi: 10.3901/jme.2013.17.073http://dx.doi.org/10.3901/jme.2013.17.073
GUO H R, WU Y B, JIAO L, et al. Ultrafine polishing of nickel phosphorus plating with magnetic compound fluid slurry[J]. Journal of Mechanical Engineering, 2013, 49(17): 73-78.(in Chinese). doi: 10.3901/jme.2013.17.073http://dx.doi.org/10.3901/jme.2013.17.073
GUO H R, WU Y B. Ultrafine polishing of optical polymer with zirconia-coated carbonyl-iron-particle-based magnetic compound fluid slurry[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1): 253-261. doi: 10.1007/s00170-015-7929-xhttp://dx.doi.org/10.1007/s00170-015-7929-x
陆政凯, 郭会茹, 吴勇波. 小曲率凹面光学玻璃的磁性混合流体精密抛光[J]. 光学 精密工程, 2023, 31(9): 1314-1324. doi: 10.37188/OPE.20233109.1314http://dx.doi.org/10.37188/OPE.20233109.1314
LU Z K, GUO H R, WU Y B. Magnetic compound fluid polishing of concave optical glass with small curvature[J]. Opt. Precision Eng., 2023, 31(9): 1314-1324.(in Chinese). doi: 10.37188/OPE.20233109.1314http://dx.doi.org/10.37188/OPE.20233109.1314
NOMURA M, MAKITA N, FUJII T, et al. Effects of water supply using ultrasonic atomization on the working life of MCF slurry in MCF polishing[J]. International Journal of Automation Technology, 2019, 13(6): 743-748. doi: 10.20965/ijat.2019.p0743http://dx.doi.org/10.20965/ijat.2019.p0743
高继博. 磁性复合流体抛光机理及其使用寿命研究[D]. 兰州: 兰州理工大学, 2022.
GAO J B. Study on Finishing Mechanism and Service Life of Magnetic Compound Fluid[D]. Lanzhou: Lanzhou University of Technology, 2022. (in Chinese)
SHIMADA K, WU Y, WONG Y C. Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid (MCF)[J]. Journal of Magnetism and Magnetic Materials, 2003, 262(2): 242-247. doi: 10.1016/s0304-8853(02)01497-xhttp://dx.doi.org/10.1016/s0304-8853(02)01497-x
FENG M, WU Y B, WANG Y L, et al. Effect of the components of Magnetic Compound Fluid (MCF) slurry on polishing characteristics in aspheric-surface finishing with the doughnut-shaped MCF tool[J]. Precision Engineering, 2020, 65: 216-229. doi: 10.1016/j.precisioneng.2020.04.021http://dx.doi.org/10.1016/j.precisioneng.2020.04.021
姜晨, 刘剑, 魏久祥, 等. h形磁性复合流体抛光工具设计及工艺试验[J]. 光学 精密工程, 2022, 30(12): 1452-1461. doi: 10.37188/OPE.20223012.1452http://dx.doi.org/10.37188/OPE.20223012.1452
JIANG C, LIU J, WEI J X, et al. Design and process test of h-shaped magnetic composite fluid polishing tool[J]. Opt. Precision Eng., 2022, 30(12): 1452-1461. (in Chinese). doi: 10.37188/OPE.20223012.1452http://dx.doi.org/10.37188/OPE.20223012.1452
0
Views
4
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution