浏览全部资源
扫码关注微信
1.长春理工大学 光电工程学院,吉林 长春 130022
2.长春理工大学 中山研究院,广东 中山 528436
3.中山吉联光电科技有限公司,广东 中山 528436
4.云南北方光学科技有限公司,云南 昆明 650216
Published:10 January 2024,
Received:22 August 2023,
Revised:11 September 2023,
移动端阅览
付秀华,魏雨君,林兆文等.可见光减反射膜薄层控制误差的分析与性能优化[J].光学精密工程,2024,32(01):1-11.
FU Xiuhua,WEI Yujun,LIN Zhaowen,et al.Thin-layer control error analysis and performance optimization of visible light anti-reflection film[J].Optics and Precision Engineering,2024,32(01):1-11.
付秀华,魏雨君,林兆文等.可见光减反射膜薄层控制误差的分析与性能优化[J].光学精密工程,2024,32(01):1-11. DOI: 10.37188/OPE.20243201.0001.
FU Xiuhua,WEI Yujun,LIN Zhaowen,et al.Thin-layer control error analysis and performance optimization of visible light anti-reflection film[J].Optics and Precision Engineering,2024,32(01):1-11. DOI: 10.37188/OPE.20243201.0001.
为提升光学镜头的成像质量,消除杂散光的影响,以K9玻璃为基底设计可见光波段平均反射率小于0.1%的减反射膜。采用电子束离子辅助沉积的制备方式,针对薄层敏感度高、光谱变化大等问题,通过建立稳定控制膜层厚度的数学模型来减小膜厚误差,提高制备精度和成膜稳定性。对减反射膜进行环测实验,优化调整工艺参数,侧重提高减反射膜的硬度和耐水煮能力。实验结果表明,最终制备出的减反射膜在420~680 nm波段内的平均反射率约为0.044%,最高反射率为0.071 2%,克服了以MgF
2
为外层的减反射膜机械性能和化学稳定性较差的问题,满足工程应用低损耗、稳定可靠、高强度、可重复性制备的要求。
To improve the imaging quality of optical lenses and eliminate the influence of stray light, an antireflective film with an average reflectance of less than 0.1% in the visible wavelength range was designed on a K9 glass substrate. Using electron beam evaporation as the preparation method, to address the issues of high sensitivity and large spectral changes in thin films, a mathematical model was established to stabilize the control of film thickness, reduce film thickness errors, improve preparation accuracy, and film formation stability. Environmental testing experiments were conducted on the antireflective film, in which the process parameters were continuously optimized and adjusted, with a focus on improving the hardness and water boiling resistance of the antireflective film. The experimental results show that the average reflectance of the prepared antireflective film is approximately 0.044% and the highest reflectance is 0.071 2% in the band range of 420-680 nm. Thus, problems caused by the poor mechanical properties and chemical stability of the antireflective film with MgF
2
as the outer layer are overcome. Further, the developed film meets the requirements of low loss, stability, reliability, high strength, and repeatable preparation in engineering applications.
光学薄膜电子束蒸发镀膜误差控制机械性能可见光反射率
thin filmelectron beam evaporation coatingerror controlmechanical propertiesvisible lightreflectance
杭凌侠, 田刚, 潘永强. 玻璃基底上双波段增透膜的设计与制备[J]. 西安工业大学学报, 2009, 29(1): 1-3, 16. doi: 10.3969/j.issn.1673-9965.2009.01.001http://dx.doi.org/10.3969/j.issn.1673-9965.2009.01.001
HANG L X, TIAN G, PAN Y Q. Design and fabrication of high performance antireflection coatings with double waveband[J]. Journal of Xi’an Technological University, 2009, 29(1):1-3, 16.(in Chinese). doi: 10.3969/j.issn.1673-9965.2009.01.001http://dx.doi.org/10.3969/j.issn.1673-9965.2009.01.001
张苗苗, 孟炳寰, 韩琳, 等. 多角度偏振成像仪鬼像校正方法[J]. 光子学报, 2019, 48(1): 0111002. doi: 10.3788/gzxb20194801.0111002http://dx.doi.org/10.3788/gzxb20194801.0111002
ZHANG M M, MENG B H, HAN L, et al. Correction of ghost artifacts for directional polarimetric camera[J]. Acta Photonica Sinica, 2019, 48(1): 0111002.(in Chinese). doi: 10.3788/gzxb20194801.0111002http://dx.doi.org/10.3788/gzxb20194801.0111002
FATEH R, DILLERT R, BAHNEMANN D. Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate[J]. Langmuir, 2013, 29(11): 3730-3739. doi: 10.1021/la400191xhttp://dx.doi.org/10.1021/la400191x
SHIMOMURA H, GEMICI Z, COHEN R E, et al. Layer-by-layer-assembled high-performance broadband antireflection coatings[J]. ACS Applied Materials & Interfaces, 2010, 2(3): 813-820. doi: 10.1021/am900883fhttp://dx.doi.org/10.1021/am900883f
朱华新, 刘桂林, 高劲松, 等. QF1基底上可见光区宽带增透膜研究[J]. 人工晶体学报, 2013, 42(6):1104-1108. doi: 10.3969/j.issn.1000-985X.2013.06.020http://dx.doi.org/10.3969/j.issn.1000-985X.2013.06.020
ZHU H X, LIU G L, GAO J S, et al. Study on wideband anti-reflection coatings of QF1 substrate in the visible light spectrum[J]. Journal of Synthetic Crystals, 2013, 42(6):1104-1108. (in Chinese). doi: 10.3969/j.issn.1000-985X.2013.06.020http://dx.doi.org/10.3969/j.issn.1000-985X.2013.06.020
付秀华, 吴冠岐, 刘冬梅, 等. 多功能防油污减反膜的研制[J]. 光子学报, 2014, 43(8): 0831001. doi: 10.3788/gzxb20144308.0831001http://dx.doi.org/10.3788/gzxb20144308.0831001
FU X H, WU G Q, LIU D M, et al. Fabrication of multifunction anti-oil antireflection coatings[J]. Acta Photonica Sinica, 2014, 43(8): 0831001.(in Chinese). doi: 10.3788/gzxb20144308.0831001http://dx.doi.org/10.3788/gzxb20144308.0831001
吕海兵, 赵松楠, 严鸿维, 等. 用于高功率激光放大器的单层宽谱增透膜[J]. 激光技术, 2016, 40(1): 38-41. doi: 10.7510/jgjs.issn.1001-3806.2016.01.009http://dx.doi.org/10.7510/jgjs.issn.1001-3806.2016.01.009
LÜ H B, ZHAO S N, YAN H W, et al. Single-layer broadband antireflective coating for high power laser amplifier[J]. Laser Technology, 2016, 40(1): 38-41.(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2016.01.009http://dx.doi.org/10.7510/jgjs.issn.1001-3806.2016.01.009
沐雯, 沈伟东, 杨陈楹, 等. 基于原子层沉积技术的石英管表面减反射膜的制备[J]. 光学学报, 2019, 39(3): 0324001. doi: 10.3788/aos201939.0324001http://dx.doi.org/10.3788/aos201939.0324001
MU W, SHEN W D, YANG CH Y, et al. Preparation of antireflection film on quartz tube surface based on atomic layer deposition technology[J]. Acta Optica Sinica, 2019, 39(3): 0324001.(in Chinese). doi: 10.3788/aos201939.0324001http://dx.doi.org/10.3788/aos201939.0324001
PFEIFFER K, GHAZARYAN L, SCHULZ U, et al. Wide-angle broadband antireflection coatings prepared by atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21887-21894. doi: 10.1021/acsami.9b03125http://dx.doi.org/10.1021/acsami.9b03125
PAUL P, PFEIFFER K, SZEGHALMI A. Antireflection coating on PMMA substrates by atomic layer deposition[J]. Coatings, 2020, 10(1): 64. doi: 10.3390/coatings10010064http://dx.doi.org/10.3390/coatings10010064
张蒙蒙, 孔伟金, 张敏, 等. 宽带增透膜工艺的优化与性能分析[J]. 青岛大学学报(自然科学版), 2015, 28(1):40-44.
ZHANG M M, KONG W J, ZHANG M, et al. Optimization and analysis of broadband AR coating process[J]. Journal of Qingdao University (Natural Science Edition), 2015, 28(1):40-44. (in Chinese)
PATEL R, PATEL N, BAZZANELLA N, et al. Fabricating multilayer antireflective coating for near complete transmittance in broadband visible light spectrum[J]. Optical Materials, 2020, 108: 110415. doi: 10.1016/j.optmat.2020.110415http://dx.doi.org/10.1016/j.optmat.2020.110415
刘冬梅, 魏博洋, 付秀华, 等. 聚碳酸酯高强度超低反射率薄膜的研制[J]. 光子学报, 2020, 49(12): 1231001. doi: 10.3788/gzxb20204912.1231001http://dx.doi.org/10.3788/gzxb20204912.1231001
LIU D M, WEI B Y, FU X H, et al. Development of polycarbonate high strength ultra-low reflectivity film[J]. Acta Photonica Sinica, 2020, 49(12): 1231001.(in Chinese). doi: 10.3788/gzxb20204912.1231001http://dx.doi.org/10.3788/gzxb20204912.1231001
焦宏飞, 汲小川, 张锦龙, 等. 高光谱性能光学薄膜研究进展[J]. 光学 精密工程, 2022, 30(21):2591-2607. doi: 10.37188/ope.20223021.2591http://dx.doi.org/10.37188/ope.20223021.2591
JIAO H F, JI X CH, ZHANG J L, et al. Research progress of advanced high-spectral-performance optical coatings[J]. Opt. Precision Eng., 2022, 30(21):2591-2607. (in Chinese). doi: 10.37188/ope.20223021.2591http://dx.doi.org/10.37188/ope.20223021.2591
WILLEY R R. Predicting achievable design performance of broadband antireflection coatings[J]. Applied Optics, 1993, 32(28): 5447. doi: 10.1364/ao.32.005447http://dx.doi.org/10.1364/ao.32.005447
惠冰. 等离子体源参数对氧化物薄膜的影响及褶皱滤光片的设计[D]. 长春: 长春理工大学,2019 .
HUI B. Influence of Plasma Source Parameters on Oxide Films and Design of Pleated Filter[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese)
王雨思, 周贤建, 李青原, 等. 截止斜率可控的蓝光防护光学薄膜[J]. 中国光学, 2021, 14(3): 544-551. doi: 10.37188/co.2020-0212http://dx.doi.org/10.37188/co.2020-0212
WANG Y S, ZHOU X J, LI Q Y, et al. Blue-blocking optical thin films with controllable cutoff slope[J]. Chinese Optics, 2021, 14(3): 544-551.(in Chinese). doi: 10.37188/co.2020-0212http://dx.doi.org/10.37188/co.2020-0212
潘永强, 朱昌, 弥谦, 等. 电子束蒸发TiO2薄膜的光学特性[J]. 应用光学, 2004, 25(5):53-55, 50. doi: 10.3969/j.issn.1002-2082.2004.05.016http://dx.doi.org/10.3969/j.issn.1002-2082.2004.05.016
PAN Y Q, ZHU CH, MI Q, et al. The optical properties of TiO2 thin film prepared by electron beam evaporation[J]. Journal of Applied Optics, 2004, 25(5):53-55, 50.(in Chinese). doi: 10.3969/j.issn.1002-2082.2004.05.016http://dx.doi.org/10.3969/j.issn.1002-2082.2004.05.016
氟化镁薄膜[J].光学工艺,1975(1):12-15. doi: 10.1016/0040-6090(75)90294-1http://dx.doi.org/10.1016/0040-6090(75)90294-1
Magnesium fluoride film [J]. Optical Process, 1975 (1): 12-15.(in Chinese). doi: 10.1016/0040-6090(75)90294-1http://dx.doi.org/10.1016/0040-6090(75)90294-1
LEE C C, WU K, KUO C C, et al. Improvement of the optical coating process by cutting layers with sensitive monitoring wavelengths[J]. Optics Express, 2005, 13(13): 4854-4861. doi: 10.1364/opex.13.004854http://dx.doi.org/10.1364/opex.13.004854
张学典, 钱研华, 常敏, 等. 光控-晶控相结合的膜厚监控法对滤光片膜厚的研究[J]. 光子学报, 2016, 45(6): 0631001. doi: 10.3788/gzxb20164506.0631001http://dx.doi.org/10.3788/gzxb20164506.0631001
ZHANG X D, QIAN Y H, CHANG M, et al. Monitoring method for filter film thickness based on the combination of photoelectric extreme value and quartz crystal oscillation[J]. Acta Photonica Sinica, 2016, 45(6): 0631001.(in Chinese). doi: 10.3788/gzxb20164506.0631001http://dx.doi.org/10.3788/gzxb20164506.0631001
郑锦华, 刘青云, 李志雄. 负偏压对含氢类金刚石薄膜性能的影响[J]. 光学 精密工程, 2022, 30(4):411-420. doi: 10.37188/OPE.20223004.0411http://dx.doi.org/10.37188/OPE.20223004.0411
ZHENG J H, LIU Q Y, LI ZH X. Effect of negative bias voltage on properties of hydrogenated diamond-like carbon films[J]. Opt. Precision Eng., 2022, 30(4):411-420.(in Chinese). doi: 10.37188/OPE.20223004.0411http://dx.doi.org/10.37188/OPE.20223004.0411
0
Views
288
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution