BAO Jie,LIU Xingtan,CHEN Jianwu,et al.Error modeling and sensitivity analysis for space-borne InSAR baseline configuration measurement[J].Optics and Precision Engineering,2024,32(01):33-42.
BAO Jie,LIU Xingtan,CHEN Jianwu,et al.Error modeling and sensitivity analysis for space-borne InSAR baseline configuration measurement[J].Optics and Precision Engineering,2024,32(01):33-42. DOI: 10.37188/OPE.20243201.0033.
Error modeling and sensitivity analysis for space-borne InSAR baseline configuration measurement
Possible errors in baseline length and angle measurements are qualitatively and quantitatively analyzed to reduce errors in the dynamic monitoring of baseline measurements of the dual-antenna InSAR system that affect the baseline measurement accuracy. First, by establishing a systematic error model, the error source of the measurement system was identified. The error sensitivity was introduced to quantitatively estimate the error term and conduct sensitivity analysis of the error term for each degree of freedom, further generating quantitative synthesis results of the comprehensive error. A set of accuracy inversion error assignment cases was analyzed. The Monte Carlo method was used to verify the feasibility and robustness of the proposed method for accurate quantitative analysis allocation in a simulation closed-loop. The simulation analysis results show that when the accuracy of the position measurements is 300 μm (3σ), and the accuracy of the triaxial angle measurements is 50'' (3σ), the baseline length accuracy can reach 1 mm (1.6σ), and the baseline angle accuracy is 2″ (1.6σ). By using this method, the accuracy of baseline measurements can be obtained directly from the input of the measured environmental conditions. The inversion of the error assignments according to the sensitivity coefficient yields the optimal layout of the system. The results are valuable for effectively guiding scheme designs and analyzing the error distribution of the measurement system.
ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382. doi: 10.1109/5.838084http://dx.doi.org/10.1109/5.838084
王超, 张红, 刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002.
WANG CH, ZHANG H, LIU ZH. Spaceborne Synthetic Aperture Radar Interferometry[M]. Beijing: Science Press, 2002.(in Chinese)
SULLIVAN R J. Radar Foundations for Imaging and Advanced Concepts[M]. Raleigh, NC: SciTech Publishing Inc., 2004. doi: 10.1049/sbra030ehttp://dx.doi.org/10.1049/sbra030e
KNEDLIK S, LOFFELD O. Baseline estimation and prediction referring to the SRTM[C]. IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ont., Canada. IEEE, 2002.
LU ZH F, LIU B, CHEN L F, et al. Analysis of influence of InSAR altimeter baseline jitter on relative elevation accuracy[J]. Industrial Control Computer, 2021, 34(8):76-78, 129. (in Chinese). doi: 10.3969/j.issn.1001-182X.2021.08.027http://dx.doi.org/10.3969/j.issn.1001-182X.2021.08.027
LI SH ZH, SHAO L, HUANG ZH Y, et al. The method of high-precision baseline measurement intersatellites in distributed insar satellite system[C]. The 8th China High Resolution Earth Observation Conference, Beijing, 2022. (in Chinese). doi: 10.11947/j.AGCS.2022.20210397http://dx.doi.org/10.11947/j.AGCS.2022.20210397
RABUS B, EINEDER M, ROTH A, et al. The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(4): 241-262. doi: 10.1016/s0924-2716(02)00124-7http://dx.doi.org/10.1016/s0924-2716(02)00124-7
DUREN R M, WONG E, BRECKENRIDGE B, et al. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar[C]. Aerospace/Defense Sensing and Controls. Proc SPIE 3365, Acquisition, Tracking, and PointingXII, Orlando, FL, USA. 1998, 3365: 51-60. doi: 10.1117/12.317529http://dx.doi.org/10.1117/12.317529
WONG E, BRECKENRIDGE W, BOUSSALIS D, et al. Attitude determination for the shuttle radar topography mission[C]. Guidance, Navigation, and Control Conference and Exhibit. Portland, OR, USA. Reston, Virigina: AIAA, 1999. doi: 10.2514/6.1999-3968http://dx.doi.org/10.2514/6.1999-3968
SHEN Y, SHAFFER S J, JORDAN R L. Shuttle Radar Topography Mission (SRTM) flight system design and operations overview[C]. Proc SPIE 4152, Microwave Remote Sensing of the Atmosphere and Environment II, 2000, 4152: 167-178. doi: 10.1117/12.410595http://dx.doi.org/10.1117/12.410595
WANG J, XIANG M SH, WEI L D, et al. The dynamic measurement for long baseline of InSAR based on distance constraint[J]. Journal of Electronics & Information Technology, 2012, 34(7): 1589-1595.(in Chinese). doi: 10.3724/sp.j.1146.2011.01220http://dx.doi.org/10.3724/sp.j.1146.2011.01220
DING W ZH, ZHANG ZH Y, YANG H, et al. Error distribution of line-of-sight measurement on the satellite borne observation platform[J]. Aerospace Control and Application, 2017, 43(2):60-66. (in Chinese). doi: 10.11728/cjss2017.02.238http://dx.doi.org/10.11728/cjss2017.02.238
GUO X, HU CH H, YAN CH X, et al. Analysis of Sun pointing error of spaceborne solar spectroradiom-eter based on Monte Carlo method[J]. Opt. Precision Eng., 2021, 29(3):474-483. (in Chinese). doi: 10.37188/ope.20212903.0474http://dx.doi.org/10.37188/ope.20212903.0474
PAN Y, LI Y, YAN CH X. Error distribution for TDLAS carbon monoxide concentration measurement system[J]. Opt. Precision Eng., 2021, 29(7):1539-1548. (in Chinese). doi: 10.37188/OPE.20212907.1539http://dx.doi.org/10.37188/OPE.20212907.1539
ZHANG ZH B, LI X H, AN J P. Firing accuracy evaluation of light gas Gun based on Monte Carlo method[J]. Aerospace Control and Application, 2019, 45(1):71-78.(in Chinese). doi: 10.3969/j.issn.1674-1579.2019.01.012http://dx.doi.org/10.3969/j.issn.1674-1579.2019.01.012