1.厦门大学 萨本栋微米纳米科学技术研究院,福建 厦门 361005
2.福建省能源材料科学与技术创新实验室(IKKEM),福建 厦门 361005
3.厦门大学 航空航天学院,福建 厦门 361102
4.厦门大学 物理科学与技术学院,福建 厦门 361005
5.厦门大学 九江研究院,江西 九江 332000
扫 描 看 全 文
姚宇超,周锐,严星等.基于卷积神经网络判定方法的激光微透镜阵列微米级加工工艺[J].光学精密工程,2024,32(01):43-52.
YAO Yuchao,ZHOU Rui,YAN Xing,et al.Micron-level processing technology of microlens array (MLA) photolithography based on convolutional neural network[J].Optics and Precision Engineering,2024,32(01):43-52.
姚宇超,周锐,严星等.基于卷积神经网络判定方法的激光微透镜阵列微米级加工工艺[J].光学精密工程,2024,32(01):43-52. DOI: 10.37188/OPE.20243201.0043.
YAO Yuchao,ZHOU Rui,YAN Xing,et al.Micron-level processing technology of microlens array (MLA) photolithography based on convolutional neural network[J].Optics and Precision Engineering,2024,32(01):43-52. DOI: 10.37188/OPE.20243201.0043.
在MLA曝光工艺中,曝光点的数量庞大,通过高倍率显微镜配合人工目检来判定曝光质量耗时耗力,造成工艺成本偏高。为了解决这个问题,设计了一种便于检测的圆环形图案并引入深度学习中的目标检测Yolov5模型,一定程度上能够取代人工目检,完成对曝光质量的快速判定。基于上述方法,分析了不同光刻胶厚度之下,线能量密度的最优区间与光刻胶的剖面倾角。并在同等线能量密度下通过圆度判定曝光图案失真情况。在本研究的MLA曝光工艺中,选取光刻胶厚度、激光曝光功率以及加工平台移动速度作为自变量,评价曝光合格率、光刻胶剖面倾角以及曝光圆度等加工质量参数具有重要的工程意义。
During microlens array(MLA) photolithography exposure process, the number of photolithography points is considerably large, thus, judgement of the photolithography quality by human eyes with a high-magnification microscope is time-consuming and labor-intensive, resulting in high process cost. To solve this problem, an easily detected circular pattern was designed and a Yolov5 model for target detection in deep learning was introduced, which can replace manual eye inspection to a certain extent and complete the rapid judgement of photolithography quality. Based on the proposed method, the optimal interval of the level of energy density during laser scanning and the profile dip angle of the photoresist were analyzed under different photoresist thicknesses. At the same level of energy density during laser scanning, the distortion of photolithography pattern was judged considering circularity. Further, the photoresist thickness, laser power, and processing platform moving speed were selected as independent variables in the MLA photolithography process to evaluate processing quality parameters processing quality parameters, such as photolithography qualification rate, photoresist profile inclination angle, and photolithography circularity, is of great significance for engineering.
无掩膜光刻微透镜阵列曝光合格率目标检测
maskless lithogrophymicrolens arrayqualification rateobject detection
陈翔, 杨音. 集成电路全产业链标准数据统计分析[J]. 中国标准化, 2022(6): 33-37. doi: 10.3969/j.issn.1002-5944.2022.06.007http://dx.doi.org/10.3969/j.issn.1002-5944.2022.06.007
CHEN X, YANG Y. Statistical analysis of the standards data in the whole IC industry chain[J]. China Standardization, 2022(6): 33-37.(in Chinese). doi: 10.3969/j.issn.1002-5944.2022.06.007http://dx.doi.org/10.3969/j.issn.1002-5944.2022.06.007
潘桂忠. 亚微米CMOS芯片与制程剖面结构[J]. 集成电路应用, 2019, 36(3):30-34. doi: 10.19339/j.issn.1674-2583.2019.03.008http://dx.doi.org/10.19339/j.issn.1674-2583.2019.03.008
PAN G ZH. Submicron CMOS chips and process profile structure[J]. Applications of IC, 2019, 36(3):30-34.(in Chinese). doi: 10.19339/j.issn.1674-2583.2019.03.008http://dx.doi.org/10.19339/j.issn.1674-2583.2019.03.008
张思琪, 周思翰, 杨卓俊, 等. 基于数字微镜器件的无掩膜光刻技术进展[J]. 光学 精密工程, 2022, 30(1):12-30. doi: 10.37188/OPE.20223001.0012http://dx.doi.org/10.37188/OPE.20223001.0012
ZHANG S Q, ZHOU S H, YANG ZH J, et al. Research progress of maskless lithography based on digital micromirror devices[J]. Opt. Precision Eng., 2022, 30(1):12-30.(in Chinese). doi: 10.37188/OPE.20223001.0012http://dx.doi.org/10.37188/OPE.20223001.0012
TANG M, CHEN Z C, HUANG Z Q, et al. Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication[J]. Applied Optics, 2011, 50(35): 6536-6542. doi: 10.1364/ao.50.006536http://dx.doi.org/10.1364/ao.50.006536
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791http://dx.doi.org/10.1109/5.726791
卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1):1-17. doi: 10.16337/j.1004-9037.2016.01.001http://dx.doi.org/10.16337/j.1004-9037.2016.01.001
LU H T, ZHANG Q CH. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition & Processing, 2016, 31(1):1-17.(in Chinese). doi: 10.16337/j.1004-9037.2016.01.001http://dx.doi.org/10.16337/j.1004-9037.2016.01.001
李旭冬, 叶茂, 李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017, 34(10): 2881-2886, 2891. doi: 10.3969/j.issn.1001-3695.2017.10.001http://dx.doi.org/10.3969/j.issn.1001-3695.2017.10.001
LI X D, YE M, LI T. Review of object detection based on convolutional neural networks[J]. Application Research of Computers, 2017, 34(10): 2881-2886, 2891.(in Chinese). doi: 10.3969/j.issn.1001-3695.2017.10.001http://dx.doi.org/10.3969/j.issn.1001-3695.2017.10.001
YOON J H, INGALE S L, KIM J S, et al. Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs[J]. Livestock Science, 2014, 159: 53-60. doi: 10.1016/j.livsci.2013.10.025http://dx.doi.org/10.1016/j.livsci.2013.10.025
杨荣坚, 王芳, 秦浩. 基于双目图像的行人检测与定位系统研究[J]. 计算机应用研究, 2018, 35(5): 1591-1595, 1600. doi: 10.3969/j.issn.1001-3695.2018.05.068http://dx.doi.org/10.3969/j.issn.1001-3695.2018.05.068
YANG R J, WANG F, QIN H. Research of pedestrian detection and location system based on stereo images[J]. Application Research of Computers, 2018, 35(5): 1591-1595, 1600.(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.05.068http://dx.doi.org/10.3969/j.issn.1001-3695.2018.05.068
LUO H, HE M, HUI B, et al.Pedestrian detection algorithm based on dual-model fused fully convolutional networks(Invited)[J].Infrared and Laser Engineering,2018,47:203001. (in Chinese). doi: 10.3788/irla201847.0203001http://dx.doi.org/10.3788/irla201847.0203001
芮挺, 费建超, 周遊, 等. 基于深度卷积神经网络的行人检测[J]. 计算机工程与应用, 2016, 52(13):162-166. doi: 10.3778/j.issn.1002-8331.1502-0122http://dx.doi.org/10.3778/j.issn.1002-8331.1502-0122
RUI T, FEI J CH, ZHOU Y, et al. Pedestrian detection based on deep convolutional neural network[J]. Computer Engineering and Applications, 2016, 52(13):162-166.(in Chinese). doi: 10.3778/j.issn.1002-8331.1502-0122http://dx.doi.org/10.3778/j.issn.1002-8331.1502-0122
张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58(4): 438-444. doi: 10.16511/j.cnki.qhdxxb.2018.21.010http://dx.doi.org/10.16511/j.cnki.qhdxxb.2018.21.010
ZHANG X Y, GAO H B, ZHAO J H, et al. Overview of autopilot technology based on deep learning[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4): 438-444.(in Chinese). doi: 10.16511/j.cnki.qhdxxb.2018.21.010http://dx.doi.org/10.16511/j.cnki.qhdxxb.2018.21.010
杨聚圃, 杜佳林, 李凡星, 等. 基于深度学习的数字光刻自动检焦方法[J]. 光子学报, 2022, 51(6): 0611002. doi: 10.3788/gzxb20225106.0611002http://dx.doi.org/10.3788/gzxb20225106.0611002
YANG J P, DU J L, LI F X, et al. Deep learning based method for automatic focus detection in digital lithography[J]. Acta Photonica Sinica, 2022, 51(6): 0611002.(in Chinese). doi: 10.3788/gzxb20225106.0611002http://dx.doi.org/10.3788/gzxb20225106.0611002
郭求是. 基于深度学习的光刻热点检测技术研究[D]. 杭州: 浙江大学, 2019.
GUO Q SH. Research on Lithography Hot Spot Detection Technology based on Deep Learning[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
YU Y T, LIN G H, JIANG I H R, et al. Machine-learning-based hotspot detection using topological classification and critical feature extraction[C]. Proceedings of the 50th Annual Design Automation Conference. 29 May 2013, Austin, Texas. New York: ACM, 2013: 1-6. doi: 10.1145/2463209.2488816http://dx.doi.org/10.1145/2463209.2488816
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/tpami.2015.2389824http://dx.doi.org/10.1109/tpami.2015.2389824
GIRSHICK R. Fast R-CNN[EB/OL]. Computer Science, 2015: arXiv: 1504.08083. https://arxiv.org/abs/1504.08083.pdfhttps://arxiv.org/abs/1504.08083.pdf. doi: 10.1109/iccv.2015.169http://dx.doi.org/10.1109/iccv.2015.169
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014. Columbus, OH, USA. IEEE, 2014. doi: 10.1109/CVPR.2014.81http://dx.doi.org/10.1109/CVPR.2014.81
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot Multibox Detector[M]. Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 779-788.
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017. Honolulu, HI. IEEE, 2017: 6517-6525.
REDMON J, FARHADI A. YOLOv3: an Incremental Improvement[EB/OL]. 2018: arXiv: 1804.02767. https://arxiv.org/abs/1804.02767.pdfhttps://arxiv.org/abs/1804.02767.pdf. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. CoRR, 2015, abs/1502.03167.
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). June 14-19, 2020. Seattle, WA, USA. IEEE, 2020.
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 770-778.
李敏学. 基于注意力机制的图像显著区域提取算法分析与比较[D]. 北京: 北京交通大学, 2011.
LI M X. Analysis and Comparison of Salient Region Extraction Algorithms Based on Attention Mechanism[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
焦军峰, 靳国旺, 熊新, 等. 旋转矩形框与CBAM改进RetinaNet的SAR图像近岸舰船检测[J]. 测绘科学技术学报, 2020, 37(6): 603-609.
JIAO J F, JIN G W, XIONG X, et al. SAR images nearshore ship detection based on RetinaNet algorithm with rotated rectangular box[J]. Journal of Geomatics Science and Technology, 2020, 37(6): 603-609.(in Chinese)
张世权, 朱斌, 顾霞. 不同衬底材料对光刻胶剖面的影响[J]. 电子与封装, 2013, 13(8): 37-39. doi: 10.3969/j.issn.1681-1070.2013.08.011http://dx.doi.org/10.3969/j.issn.1681-1070.2013.08.011
ZHANG SH Q, ZHU B, GU X. Research of photo resists cross section on different substrate material[J]. Electronics and Packaging, 2013, 13(8): 37-39.(in Chinese). doi: 10.3969/j.issn.1681-1070.2013.08.011http://dx.doi.org/10.3969/j.issn.1681-1070.2013.08.011
韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016.
WEI Y Y. Theory and Application of Advanced Lithography for VLSI[M]. Beijing: Science Press, 2016.(in Chinese)
0
Views
4
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution