浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
3.吉林省智能波前传感与控制重点实验室,吉林 长春 130033
4.中国人民解放军63768部队,陕西 西安 710200
Published:10 January 2024,
Received:05 June 2023,
Revised:24 July 2023,
移动端阅览
杨禹凯,谷健,王建立等.适应大范围星场密度变化的恒星辨识与抑制[J].光学精密工程,2024,32(01):111-124.
YANG Yukai,GU Jan,WANG Janli,et al.Identification and suppression of stars under large range of star field density variation[J].Optics and Precision Engineering,2024,32(01):111-124.
杨禹凯,谷健,王建立等.适应大范围星场密度变化的恒星辨识与抑制[J].光学精密工程,2024,32(01):111-124. DOI: 10.37188/OPE.20243201.0111.
YANG Yukai,GU Jan,WANG Janli,et al.Identification and suppression of stars under large range of star field density variation[J].Optics and Precision Engineering,2024,32(01):111-124. DOI: 10.37188/OPE.20243201.0111.
大视场光学望远镜是中高轨目标搜索的重要设备,在搜索图像中除中高轨目标外还存在恒星目标,对恒星目标进行辨识与抑制是中高轨目标检测的必要环节之一。考虑银道面附近天区、曝光时间差异以及多云遮挡等因素的影响,图像中的星场密度变化区间非常大,传统的恒星辨识方法在计算准确性与实时性方面均存在局限性,导致恒星虚警、计算超时等情况的发生。为解决该问题,提出了一种基于惯性坐标时域相对不变性的恒星辨识与抑制方法。推导了地平坐标系与惯性坐标系的数学转换关系,并由此构建了恒星辨识模型;在不同的静态系统误差条件下,量化分析了恒星目标的惯性坐标时域相对不变性;最后,开展了恒星辨识与抑制算法的仿真与实验验证。仿真与实验结果表明:在时间间隔为10 s、静态系统误差为10″的条件下,恒星的惯性坐标最大相对差异为0.51″(赤经),0.16″(赤纬),其时域相对不变性满足恒星辨识需求,辨识过程完全不依赖星场密度。经100圈次中高轨目标实测图像验证,本文方法未出现恒星虚警及中高轨目标检测缺失的现象。
The large field optical telescope is an important equipment for the search of medium-high orbit targets. However, stellar targets also appear in the search images. Thus, the identification and suppression of stellar targets is a necessary step in the detection of medium-high orbit targets. Considering the influence of the sky area near the galactic plane, difference in exposure time, and cloudy occlusion, the variation in the star field density within the image is very large. The traditional star identification method has limitations in the calculation accuracy and real-time performance, which leads to the occurrence of false alarm of stars and calculation timeout. To solve these problems, this study proposes a method of star identification and suppression based on the relative invariance of inertia coordinates in time domain. First, the mathematical transformation relationship between the horizon coordinate system and the inertial coordinate system is derived, and the star identification model is constructed accordingly. Then, the time domain relative invariance of the inertial coordinates of the stellar target is quantitatively analyzed under different static system errors. Finally, the star identification and suppression algorithm was verified via simulation and experiment. As a result, the maximum relative difference in the inertial coordinates of stars is 0.51" (right longitude) and 0.16" (declination) when the time interval is 10" and the static system error is 10". Thus, the time domain relative invariance meets the requirements regarding star identification, and the corresponding process is completely independent of star field density. The proposed method was also verified considering 100 measurement images of medium-altitude orbit objects, and no false alarm of stars and missing detection phenomenon of medium-altitude orbit objects were observed.
目标检测恒星辨识与抑制中高轨目标搜索惯性坐标系
target detectionidentification and suppression of starssearch of GEO and MEOinertial coordinate system
杨育彬, 林珲. 利用天文观测图像对空间碎片目标进行自动识别与追踪[J]. 武汉大学学报(信息科学版), 2010, 35(2): 209-214.
YANG Y B, LIN H. Automatic identification and tracking of space debris targets using astronomical observation images[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 209-214.(in Chinese)
张景旭. 地基大口径望远镜系统结构技术综述[J]. 中国光学, 2012, 5(4): 327-336. doi: 10.3788/CO.20120504.0327http://dx.doi.org/10.3788/CO.20120504.0327
ZHANG J X. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics, 2012, 5(4): 327-336.(in Chinese). doi: 10.3788/CO.20120504.0327http://dx.doi.org/10.3788/CO.20120504.0327
韩璐瑶, 谭婵, 刘云猛, 等. 在轨实时空间目标检测算法研究[J]. 航天返回与遥感, 2021, 42(6):122-131. doi: 10.3969/j.issn.1009-8518.2021.06.012http://dx.doi.org/10.3969/j.issn.1009-8518.2021.06.012
HAN L Y, TAN CH, LIU Y M, et al. Research on the on-orbit real-time space target detection algorithm[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(6):122-131.(in Chinese). doi: 10.3969/j.issn.1009-8518.2021.06.012http://dx.doi.org/10.3969/j.issn.1009-8518.2021.06.012
韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51(4): 3788/IRLA20210393. doi: 10.3788/IRLA20210393http://dx.doi.org/10.3788/IRLA20210393
HAN J H, WEI Y T, PENG ZH M, et al. Infrared dim and small target detection: a review[J]. Infrared and Laser Engineering, 2022, 51(4): 3788/IRLA20210393.(in Chinese). doi: 10.3788/IRLA20210393http://dx.doi.org/10.3788/IRLA20210393
穆靖, 李伟华, 饶俊民, 等. 采用三层模板局部差异度量的红外弱小目标检测[J]. 光学 精密工程, 2022, 30(7):869-882. doi: 10.37188/OPE.20223007.0869http://dx.doi.org/10.37188/OPE.20223007.0869
MU J, LI W H, RAO J M, et al. Infrared small target detection using tri-layer template local difference measure[J]. Opt. Precision Eng., 2022, 30(7):869-882.(in Chinese). doi: 10.37188/OPE.20223007.0869http://dx.doi.org/10.37188/OPE.20223007.0869
鄂薇, 王大轶, 邹元杰, 等. 复杂空间背景下暗弱目标的快速识别方法[J]. 中国科学 (物理学 力学 天文学), 2022, 52(1): 23-29.
E W, WANG D Y, ZOU Y J, et al. Fast recognition method of dim and weak targets in complex spatial background[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2022, 52(1): 23-29.(in Chinese)
修建娟, 张敬艳, 董凯. 基于动力学模型约束的空间目标精确跟踪算法研究[J]. 电子学报, 2021, 49(4):781-787. doi: 10.12263/DZXB.20200336http://dx.doi.org/10.12263/DZXB.20200336
XIU J J, ZHANG J Y, DONG K. Precise tracking algorithm of space target based on dynamic model[J]. Acta Electronica Sinica, 2021, 49(4):781-787.(in Chinese). doi: 10.12263/DZXB.20200336http://dx.doi.org/10.12263/DZXB.20200336
曹城华, 武文波, 王钰. 基于Radon变换的空间目标运动方向检测[J]. 光学 精密工程, 2021, 29(7):1678-1685. doi: 10.37188/ope.20212907.1678http://dx.doi.org/10.37188/ope.20212907.1678
CAO CH H, WU W B, WANG Y. Motion direction detection of space target based on Radon transformation[J]. Opt. Precision Eng., 2021, 29(7):1678-1685.(in Chinese). doi: 10.37188/ope.20212907.1678http://dx.doi.org/10.37188/ope.20212907.1678
张春华, 陈标, 周晓东. 运动背景星空图像中小目标的运动轨迹提取算法[J]. 光学 精密工程, 2008, 16(3): 524-530. doi: 10.3321/j.issn:1004-924X.2008.03.025http://dx.doi.org/10.3321/j.issn:1004-924X.2008.03.025
ZHANG CH H, CHEN B, ZHOU X. Small target trace acquisition algorithm for sequence star images with moving background[J]. Opt. Precision Eng., 2008, 16(3): 524-530.(in Chinese). doi: 10.3321/j.issn:1004-924X.2008.03.025http://dx.doi.org/10.3321/j.issn:1004-924X.2008.03.025
张波. 绘制银河[J]. 科学世界, 2021(3): 98-109.
ZHANG B. Drawing the Milky Way [J]. Newton, 2021(3): 98-109.(in Chinese)
王海群, 赵燕青, 王一. 基于明亮区域分割的图像去雾算法[J]. 液晶与显示, 2023, 38(5):636-643. doi: 10.37188/cjlcd.2022-0297http://dx.doi.org/10.37188/cjlcd.2022-0297
WANG H Q, ZHAO Y Q, WANG Y. Image defogging method based on bright region segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(5):636-643.(in Chinese). doi: 10.37188/cjlcd.2022-0297http://dx.doi.org/10.37188/cjlcd.2022-0297
柳庆武, 胡晓惠, 袁麟. 深空可见光图像中弱小运动目标实时检测[J]. 电子学报, 2009, 37(7): 1614-1617. doi: 10.3321/j.issn:0372-2112.2009.07.038http://dx.doi.org/10.3321/j.issn:0372-2112.2009.07.038
LIU Q W, HU X H, YUAN L. Real time detection for dim moving target in visible optical image of deep outer space[J]. Acta Electronica Sinica, 2009, 37(7): 1614-1617.(in Chinese). doi: 10.3321/j.issn:0372-2112.2009.07.038http://dx.doi.org/10.3321/j.issn:0372-2112.2009.07.038
黄宗福, 王卫华, 韩建涛, 等. 一种天文光电图像序列弱小目标实时检测算法[J]. 信号处理, 2010, 26(9):1379-1384. doi: 10.3969/j.issn.1003-0530.2010.09.017http://dx.doi.org/10.3969/j.issn.1003-0530.2010.09.017
HUANG Z F, WANG W H, HAN J T, et al. A real-time algorithm for weak small targets detection in astronomical opto-electronic image sequences[J]. Signal Processing, 2010, 26(9):1379-1384.(in Chinese). doi: 10.3969/j.issn.1003-0530.2010.09.017http://dx.doi.org/10.3969/j.issn.1003-0530.2010.09.017
罗浩, 毛银盾, 于涌, 等. 利用超大视场光电望远镜观测GEO中的目标识别方法[J]. 光电工程, 2017, 44(4):418-426, 465. doi: 10.3969/j.issn.1003-501X.2017.04.006http://dx.doi.org/10.3969/j.issn.1003-501X.2017.04.006
LUO H, MAO Y D, YU Y, et al. A method of GEO targets recognition in wide-field opto-electronic telescope observation[J]. Opto-Electronic Engineering, 2017, 44(4):418-426, 465.(in Chinese). doi: 10.3969/j.issn.1003-501X.2017.04.006http://dx.doi.org/10.3969/j.issn.1003-501X.2017.04.006
孙辉. 快速灰度投影算法及其在电子稳像中的应用[J]. 光学 精密工程, 2007, 15(3): 412-416. doi: 10.3321/j.issn:1004-924X.2007.03.020http://dx.doi.org/10.3321/j.issn:1004-924X.2007.03.020
SUN H. Fast gray projection algorithm and its application to electronic image stabilization[J]. Opt. Precision Eng., 2007, 15(3): 412-416.(in Chinese). doi: 10.3321/j.issn:1004-924X.2007.03.020http://dx.doi.org/10.3321/j.issn:1004-924X.2007.03.020
戴宪策, 谢奇. 基于傅里叶-梅林变换的图像匹配方法研究[J]. 红外技术, 2016, 38(10):860-863. doi: 10.11846/j.issn.1001_8891.201610009http://dx.doi.org/10.11846/j.issn.1001_8891.201610009
DAI X C, XIE Q. Research on image matching algorithm based on Fourier-mellin transform[J]. Infrared Technology, 2016, 38(10):860-863.(in Chinese). doi: 10.11846/j.issn.1001_8891.201610009http://dx.doi.org/10.11846/j.issn.1001_8891.201610009
李振伟, 张涛, 孙明国. 星空背景下空间目标的快速识别与精密定位[J]. 光学 精密工程, 2015, 23(2):589-599. doi: 10.3788/ope.20152302.0589http://dx.doi.org/10.3788/ope.20152302.0589
LI ZH W, ZHANG T, SUN M G. Fast recognition and precise orientation of space objects in star background[J]. Opt. Precision Eng., 2015, 23(2):589-599.(in Chinese). doi: 10.3788/ope.20152302.0589http://dx.doi.org/10.3788/ope.20152302.0589
刘德龙, 杨文波, 柳鸣, 等. 精密跟踪型望远镜适配的快速星图匹配[J]. 光学 精密工程, 2022, 30(22):2952-2961. doi: 10.37188/ope.20223022.2952http://dx.doi.org/10.37188/ope.20223022.2952
LIU D L, YANG W B, LIU M, et al. Rapid star pattern matching for precisely tracking telescopes[J]. Opt. Precision Eng., 2022, 30(22):2952-2961.(in Chinese). doi: 10.37188/ope.20223022.2952http://dx.doi.org/10.37188/ope.20223022.2952
0
Views
365
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution