您当前的位置:
首页 >
文章列表页 >
PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN
Information Sciences | 更新时间:2024-02-01
    • PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN

    • 在医学图像融合领域取得了一项重要研究成果。针对现有基于生成对抗网络(GAN)的医学图像融合方法存在的训练不稳定、提取图像语义信息能力不足等问题,研究团队提出了一种双耦合交互式融合GAN(DCIF-GAN)。这一创新方案在融合肺部肿瘤PET/CT医学图像时表现出色,有效提升了图像质量。DCIF-GAN通过设计双生成器双鉴别器结构,实现生成器与鉴别器之间的耦合,并通过全局自注意力机制强化交互式融合。同时,引入耦合CNN-Transformer的特征提取和重构模块,显著提高了对同一模态图像内部局部和全局特征信息的提取能力。此外,跨模态交互式融合模块的应用,进一步整合了不同模态间的全局交互信息。实验验证表明,DCIF-GAN在平均梯度、空间频率、结构相似度、标准差、峰值信噪比和信息熵等指标上,相比其他四种方法中最优方法,分别提高了1.38%、0.39%、29.05%、30.23%、0.18%和4.63%。这一成果不仅突出了病变区域信息,还使融合图像结构更加清晰,纹理细节更丰富。这一研究为医学图像融合领域提供了新的解决方案,有望为计算机辅助诊断技术的发展开辟新方向。
    • Optics and Precision Engineering   Vol. 32, Issue 2, Pages: 221-236(2024)
    • DOI:10.37188/OPE.20243202.0221    

      CLC: TP399
    • Published:25 January 2024

      Received:02 August 2023

      Revised:14 September 2023

    扫 描 看 全 文

  • ZHOU Tao,CHENG Qianru,ZHANG Xiangxiang,et al.PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN[J].Optics and Precision Engineering,2024,32(02):221-236. DOI: 10.37188/OPE.20243202.0221.

  •  
  •  

0

Views

52

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Image fusion based on neighborhood features of wavelet coefficients
Infrared and visible image fusion based on target enhancement and butterfly optimization
Underwater polarization image fusion based on unsupervised learning and attention mechanisms
Improved Retinex low-light image enhancement for stage scenes
High precision measurement of ruby ball diameter by compound secondary edge detection

Related Author

CHEN Hong-bo
WANG Qiang
ZHANG Xiao-fei
WEI Chun-rong
ZHANG Chao-ying
HAO Shuai
LI Tong
MA Xu

Related Institution

广西师范大学, 物理与信息工程学院
College of Electrical and Control Engineering, Xi'an University of Science and Technology
Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology
Shanghai Film Academy, Shanghai University
School of Mechatronic Engineering and Automation, Shanghai University
0