1.东华理工大学 信息工程学院,江西 南昌 330013
2.东华理工大学 软件学院,江西 南昌 330013
3.江西省核地学数据科学与系统工程技术研究中心,江西 南昌 330013
扫 描 看 全 文
袁兆林,吴永炜,余璐瑶等.Ga掺杂ZnO微米棒紫外光探测器的制备与特性[J].光学精密工程,2024,32(05):643-652.
YUAN Zhaolin,WU Yongwei,YU Luyao,et al.Fabrications and characteristics of Ga-doped ZnO microrods ultraviolet photodetectors[J].Optics and Precision Engineering,2024,32(05):643-652.
袁兆林,吴永炜,余璐瑶等.Ga掺杂ZnO微米棒紫外光探测器的制备与特性[J].光学精密工程,2024,32(05):643-652. DOI: 10.37188/OPE.20243205.0643.
YUAN Zhaolin,WU Yongwei,YU Luyao,et al.Fabrications and characteristics of Ga-doped ZnO microrods ultraviolet photodetectors[J].Optics and Precision Engineering,2024,32(05):643-652. DOI: 10.37188/OPE.20243205.0643.
为了获得高性能和低成本的氧化锌(ZnO)基紫外光探测器,使用Ga掺杂ZnO(ZnO∶Ga)作为光敏层,采用水热法合成了不同Ga掺杂浓度ZnO∶Ga微米棒,Ga与Zn的原子比分别为0%(未掺杂),0.5%,1%,2%和4%。使用X射线衍射仪(XRD)测试所有样品的晶体结构,发现它们都为六方纤锌矿结构的ZnO。采用扫描电子显微镜(SEM)观察它们的形貌,都呈现棒状结构。进一步,制备叉指图案氟掺杂的氧化锡(FTO)导电玻璃基底,将不同Ga掺杂浓度ZnO∶Ga微米棒分别涂覆在FTO上,得到5种简单结构的紫外光探测器,系统研究了它们的性能。结果表明:所有ZnO∶Ga微米棒紫外光探测器对365 nm紫外光表现出良好的响应。其中,1% Ga掺杂ZnO∶Ga微米棒紫外光探测器性能最佳,经计算,在365 nm波长处,它的响应度、增益和比探测率分别为13.13 A/W (5 V),44.63 (5 V),3.31×10
12
Jones,响应时间和衰减时间分别为12.3 s和36.4 s。说明在ZnO微米棒中进行合适Ga掺杂能有效提高紫外光探测器的性能。该研究有助于基于ZnO∶Ga材料的紫外光探测器及相关器件发展。
To achieve high⁃performance
low⁃cost zinc oxide (ZnO)⁃based ultraviolet photodetectors
utilizing Ga⁃doped ZnO (ZnO:Ga) as the photosensitive layer is key. This study synthesized ZnO:Ga microrods with varying Ga doping concentrations (0% [undoped ZnO]
0.5%
1%
2%
and 4%) using a straightforward hydrothermal method. The atomic ratios of Ga to Zn were metic
ulously adjusted. Initial analyses revealed that all samples possessed the hexagonal wurtzite ZnO structure
as confirmed by X⁃ray diffractometry (XRD). Scanning electron microscopy (SEM) showed that the microrods maintained a consistent rod⁃like morphology. Subsequently
these microrods were applied to fluorine⁃doped tin oxide (FTO) glass substrates with interdigital patterns to construct five ultraviolet photodetectors. Their performance was thoroughly evaluated
demonstrating that all devices efficiently responded to 365 nm light. Notably
the photodetector with 1% Ga⁃doped ZnO microrods achieved superior performance
delivering a responsivity of 13.13 A/W
a gain of 44.63
and a specific detectivity of 3.31×10
12
Jones at 365 nm. Its response and decay times were recorded at 12.3 s and 36.4 s
respectively. These findings suggest that an optimal Ga concentration can significantly enhance the performance of ZnO⁃based ultraviolet photodetectors. This research contributes valuable insights for the development of advanced ultraviolet photodetectors and related devices utilizing ZnO:Ga materials.
紫外光探测器镓掺杂氧化锌微米棒水热法响应度
ultraviolet photodetectorGa-doped ZnOmicrorodshydrothermal methodresponsivity
CHEN K, WANG X F, ZOU C, et al. Two-in-one: End-emitting blue LED and self-powered UV photodetector based on single trapezoidal PIN GaN microwire for ambient light UV monitoring and feedback[J]. Small Methods, 2023, 7(6): 2300138. doi: 10.1002/smtd.202300138http://dx.doi.org/10.1002/smtd.202300138
SOSNA-GLEBSKA A, SIBINSKI M, SZCZECINSKA N, et al. UV-Visible silicon detectors with zinc oxide nanoparticles acting as wavelength shifters[J]. Materials Today: Proceedings, 2022, 20: 25-29.
XU X, CHEN J X, CAI S, et al. A real-time Wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector[J]. Advanced Materials, 2018, 30(43): 1803165. doi: 10.1002/adma.201870321http://dx.doi.org/10.1002/adma.201870321
WEI J Y, SHEN L P, ZHENG Z C, et al. The suppression of dark current for achieving high-performance Ga2O3 nanorod array ultraviolet photodetector[J]. Ceramics International, 2022, 48(9): 12112-12117. doi: 10.1016/j.ceramint.2022.01.071http://dx.doi.org/10.1016/j.ceramint.2022.01.071
DALAPATI P, EGAWA T, MIYOSHI M. Current-driven degradation dynamics in GaN/InGaN multi-quantum-wells UV photodetectors fabricated with a high-quality Al2O3 passivation film[J]. Vacuum, 2023, 213: 112159. doi: 10.1016/j.vacuum.2023.112159http://dx.doi.org/10.1016/j.vacuum.2023.112159
朱建华,容萍,任帅,等. ZnO 纳米棒/Bi2S3量子点异质结的制备及光电探测性能研究[J]. 光学 精密工程,2022,30(16):1915-1923. doi: 10.37188/ope.20223016.1915http://dx.doi.org/10.37188/ope.20223016.1915
ZHU J H, RONG P, REN SH, et al. Preparation and photodetection performance of ZnO nanorods/Bi2S3 quantum dots heterojunction[J]. Opt. Precision Eng., 2022, 30(16): 1915-1923. (in Chinese). doi: 10.37188/ope.20223016.1915http://dx.doi.org/10.37188/ope.20223016.1915
HAN Y R, WANG X F, FU S H, et al. Ultrahigh detectivity broad spectrum UV photodetector with rapid response speed based on p-β Ga2O3/n-GaN heterojunction fabricated by a reversed substitution doping method[J]. Small, 2023, 19(16): 2206664. doi: 10.1002/smll.202206664http://dx.doi.org/10.1002/smll.202206664
WU H S, ZHANG T, SHEN L Y, et al. Interfacial engineering of SnS/Ga2O3 heterojunction by SnO for a high-performance self-powered solar-blind UV photodetector [J]. Advanced Materials Interfaces, 2022, 9(24): 2200851. doi: 10.1002/admi.202200851http://dx.doi.org/10.1002/admi.202200851
胡韩飞,徐英添,李莉,等.基于溶胶凝胶法制备的CuCr1-xMgxO2/ZnO纳米棒紫外光电探测器[J]. 光学学报, 2022, 42(14): 1423001.
HU H F, XU Y T, LI L, et al. A CuCr1-xMgxO2/ZnO nanorods UV photodetector prepared by Sol-gel method[J]. Acta Optica Sinica, 2022, 42(14): 1423001. (in Chinese)
NING Y, ZHANG Z, TENG F, et al. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction[J]. Small, 2018, 14(13): 1703754. doi: 10.1002/smll.201703754http://dx.doi.org/10.1002/smll.201703754
SHKIR M. Development of highly sensitive Al, Ga, and In-doped ZnO films by the drop casting method for NH3 gas sensing[J]. New Journal of Chemistry, 2023, 47(10): 4880-4887. doi: 10.1039/d2nj05323chttp://dx.doi.org/10.1039/d2nj05323c
KUMAR A G, LI X, DU Y, et al. UV-Photodetector based on heterostructured ZnO/(Ga,Ag)-co-doped ZnO nanorods by cost-effective two-step process[J]. Applied Surface Science, 2020, 509: 144770. doi: 10.1016/j.apsusc.2019.144770http://dx.doi.org/10.1016/j.apsusc.2019.144770
XU M, YUAN Z L, WANG B Y, et al. Hydrothermal synthesis of single‑crystalline Ag‑doped ZnO nanoneedles for ultraviolet detection[J]. Journal of Electronic Materials, 2022, 51(9): 7020-7027. doi: 10.1007/s11664-022-09931-xhttp://dx.doi.org/10.1007/s11664-022-09931-x
MANOHARAN R, MANJCEEVAN A, VELAUTHAMURTY K, et al. Conversion of both photon and mechanical energy into chemical energy using higher concentration of Al doped ZnO[J]. Journal of Alloys and Compounds, 2023, 948: 169712. doi: 10.1016/j.jallcom.2023.169712http://dx.doi.org/10.1016/j.jallcom.2023.169712
PHAM A T T, HOANG D V, NGUYEN T H, et al. Hydrogen enhancing Ga doping efficiency and electron mobility in high-performance transparent conducting Ga-doped ZnO films[J]. Journal of Alloys and Compounds, 2021, 860: 158518. doi: 10.1016/j.jallcom.2020.158518http://dx.doi.org/10.1016/j.jallcom.2020.158518
CHINNASMY M, BALASUBRAMANIAN K. Investigation on laser induced fano resonance of hydrothermally synthesized Ag doped ZnO hierarchical nanoporous structure and its UV photodetector properties[J]. Optical Materials, 2022, 133: 112873. doi: 10.1016/j.optmat.2022.112873http://dx.doi.org/10.1016/j.optmat.2022.112873
ATIQ S, ANSAR M T, HASSAN A, et al. Interlayer effect on photoluminescence enhancement and band gap modulation in Ga-doped ZnO thin films[J]. Superlattices and Microstructures, 2020, 144: 106576. doi: 10.1016/j.spmi.2020.106576http://dx.doi.org/10.1016/j.spmi.2020.106576
ALI H E, GANESH V, HARRTHA L, et al. Kramers-Kronig analysis of the optical linearity and nonlinearity of nanostructured Ga-doped ZnO thin films[J]. Optics and Laser Technology, 2021, 135: 106691. doi: 10.1016/j.optlastec.2020.106691http://dx.doi.org/10.1016/j.optlastec.2020.106691
GHAFRY S S AAL, AL-ABRI M Z, FARSI B A, et al. Ga-doped ZnO nanorods: The photocatalytic performance of methylene blue under solar irradiation[J]. Optical Materials, 2022, 126: 11213. doi: 10.1016/j.optmat.2022.112139http://dx.doi.org/10.1016/j.optmat.2022.112139
ZHANG M, ZHOU T, LI H, et al. UV-durable superhydrophobic ZnO/SiO2 nanorod arrays on an aluminum substrate using catalyst-free chemical vapor deposition and their corrosion performance[J]. Applied Surface Science, 2023, 623: 157085. doi: 10.1016/j.apsusc.2023.157085http://dx.doi.org/10.1016/j.apsusc.2023.157085
SHINDE S R, SHINDE V P. Liquefied petroleum gas sensing performance of solochemically synthesized ZnO nanorods: Role of precursors and fractal analysis[J]. Sensors and Actuators A: Physical, 2022, 345: 113800. doi: 10.1016/j.sna.2022.113800http://dx.doi.org/10.1016/j.sna.2022.113800
DENG H, FANG B, ZHANG Q, et al. Porosity engineering of ZnO nanorods for efficient sensing of n-butanol vapor[J]. Materials Letters, 2022, 328: 133169. doi: 10.1016/j.matlet.2022.133169http://dx.doi.org/10.1016/j.matlet.2022.133169
MICOVA J, REMES Z, ARTEMENKO A, et al. Plasma treatment of Ga-doped ZnO nanorods[J]. Physica Status Solidi A, 2022, 219(10): 2100663. doi: 10.1002/pssa.202100663http://dx.doi.org/10.1002/pssa.202100663
PHAN D T, CHUNG G S. Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties[J]. Sensors and Actuators B: Chemical, 2013, 187: 191-197. doi: 10.1016/j.snb.2012.10.080http://dx.doi.org/10.1016/j.snb.2012.10.080
SINGH P, SIMANJUNTAK F M, KUMAR A, et al. Resistive switching behavior of Ga doped ZnO-nanorods film conductive bridge random access memory[J]. Thin Solid Films, 2018, 660: 828-833. doi: 10.1016/j.tsf.2018.03.027http://dx.doi.org/10.1016/j.tsf.2018.03.027
KUMAR K D A, MELE P, MURAHARI P, et al. Enhancement of performance of Ga incorporated ZnO UV photodetectors prepared by simplified two step chemical solution process[J]. Sensors and Actuators: A. Physical, 2022, 333: 113217. doi: 10.1016/j.sna.2021.113217http://dx.doi.org/10.1016/j.sna.2021.113217
YANG M L, WENG X L, IQBAL M A, et al. Broadband photoresponse in plasmon-enhanced Ga-doped ZnO[J]. Materials Advances, 2023, 4(9): 2226-2233. doi: 10.1039/d3ma00017fhttp://dx.doi.org/10.1039/d3ma00017f
HSIAO C H, HUANG C S, YOUNG S J, et al. Field-emission and photoelectrical characteristics of Ga-ZnO nanorods photodetector[J]. IEEE Transactions on Electron Devices, 2013, 60(6): 1905-1910. doi: 10.1109/ted.2013.2257790http://dx.doi.org/10.1109/ted.2013.2257790
YOUNG S J, CHIOU C L. Synthesis and optoelectronic properties of Ga-doped ZnO nanorods by hydrothermal method[J]. Microsystem Technologies, 2018, 24(11): 103-107. doi: 10.1007/s00542-016-3183-xhttp://dx.doi.org/10.1007/s00542-016-3183-x
YOUNG S J, CHIOU C L, LIU Y H, et al. Synthesis of Ga-doped ZnO nanorods by hydrothermal method and their application to ultraviolet photodetector[J]. Inventions, 2016, 1(1): 3. doi: 10.3390/inventions1010003http://dx.doi.org/10.3390/inventions1010003
YOUNG S J, LIU Y H, SHIBLEE M D N I, et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures[J]. ACS Applied Electronic Materials, 2020, 2(11): 3522-3529. doi: 10.1021/acsaelm.0c00556http://dx.doi.org/10.1021/acsaelm.0c00556
CHU Y L, YOUNG S J, CHU T T, et al. Improvement of the UV-sensing performance of ga-doped ZnO nanostructures via a wet chemical solution at room temperature[J]. ECS Journal of Solid State Science and Technology, 2021, 10(12): 127001. doi: 10.1149/2162-8777/ac3e43http://dx.doi.org/10.1149/2162-8777/ac3e43
WU H, YUAN Z L, WANG B Y, et al. Synthesis of single-crystalline ZnO nanoflowers for a superhigh-sensitivity ultraviolet photodetector application[J]. Optical Materials, 2021, 122: 111683. doi: 10.1016/j.optmat.2021.111683http://dx.doi.org/10.1016/j.optmat.2021.111683
LUO P, WANG F, QU J, et al. Self-driven WSe2/Bi2O2Se van der waals heterostructure photodetectors with high light On/Off ratio and fast response[J]. Advanced Functional Materials, 2021, 31(8): 2008351. doi: 10.1002/adfm.202008351http://dx.doi.org/10.1002/adfm.202008351
ZHENG H, JIANG Y, YANG S, et al. ZnO nanorods array as light absorption antenna for high-gain UV photodetectors[J]. Journal of Alloys and Compounds, 2020, 812: 152158. doi: 10.1016/j.jallcom.2019.152158http://dx.doi.org/10.1016/j.jallcom.2019.152158
袁兆林,胡宇杰,吕季辉,等.ZnO纳米线阵列/PVK异质结紫外光探测器特性[J]. 光学学报,2022,42(22): 2204001. doi: 10.3788/AOS202242.2204001http://dx.doi.org/10.3788/AOS202242.2204001
YUAN ZH L, HU Y J, LÜ J H, et al. Characteristics of ZnO nanowire arrays/PVK heterojunction ultraviolet photodetector[J]. Acta Optica Sinica, 2022, 42(22): 2204001. (in Chinese). doi: 10.3788/AOS202242.2204001http://dx.doi.org/10.3788/AOS202242.2204001
XU N C, YUAN Z L, NIE F J, et al. Hydrothermal growth and ultraviolet sensing performance of well-aligned Ga-doped ZnO nanowire arrays[J]. Optical Materials, 2022, 133: 112995. doi: 10.1016/j.optmat.2022.112995http://dx.doi.org/10.1016/j.optmat.2022.112995
KUMAR C, KUSHWAHA B K, KUMAR A, et al. Fibrous Al-Doped ZnO thin film ultraviolet photodetectors with improved responsivity and speed[J]. IEEE Photonics Technology Letters, 2020, 32(6): 337-340. doi: 10.1109/lpt.2020.2974780http://dx.doi.org/10.1109/lpt.2020.2974780
JENISH S L, VALANARASU S, PRAKASH B, et al. Improved optical and electrical properties of Fe doped ZnO nanostructures facilely deposited by low-cost SILAR method for photosensor applications[J]. Surfaces and Interfaces, 2022, 31: 102071. doi: 10.1016/j.surfin.2022.102071http://dx.doi.org/10.1016/j.surfin.2022.102071
0
Views
13
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution