您当前的位置:
首页 >
文章列表页 >
Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection
Information Sciences | 更新时间:2024-05-08
    • Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection

    • 钢材缺陷检测领域取得重要突破。针对钢材表面缺陷形态多样、结构复杂等问题,研究者提出了一种轻量化的VTG-YOLOv7-tiny检测算法。该算法通过设计VoVGA-FPN网络,增强特征融合能力;构建三重坐标注意力机制,提升特征提取能力;引入鬼影混洗卷积,降低模型参数量和计算量;增加大目标检测层,改善检测精度。实验验证表明,改进后的算法在NEU-DET和Severstal数据集上mAP分别提升5.7%和8.5%,参数量和计算量分别降低0.61M和4.2G,精确度和召回率也显著提升。这一成果为钢材缺陷检测提供了新的解决方案,并有望为边缘终端设备提供高效、准确的检测能力。
    • Optics and Precision Engineering   Vol. 32, Issue 8, Pages: 1227-1240(2024)
    • DOI:10.37188/OPE.20243208.1227    

      CLC: TP391.4
    • Published:25 April 2024

      Received:16 October 2023

      Revised:01 December 2023

    扫 描 看 全 文

  • LIANG Liming,LONG Pengwei,FENG Yao,et al.Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection[J].Optics and Precision Engineering,2024,32(08):1227-1240. DOI: 10.37188/OPE.20243208.1227.

  •  
  •  

0

Views

72

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Object detection of steel surface defect based on multi-scale enhanced feature fusion
Review of defect detection algorithms for solar cells based on machine vision
Multispectral image fusion method for surface defect detection of IC devices
Multi-scale YOLOv5 for solar cell defect detection
Detection of mirror defects based on sector fringe reflection

Related Author

GUO Tailiang
LIN Shanling
PENG Xueling
WANG Dong
LIN Zhixian
LIN Jianpu
WU Yiquan
LIU Yuqi

Related Institution

School of Physics and Information Engineering, Fuzhou University
China Fujian Photoelectric Information Science and Technology Innovation Laboratory
School of Advanced Manufacturing, Fuzhou University
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics
College of Mechanical and Electrical Engineering, Guangdong University of Technology
0