您当前的位置:
首页 >
文章列表页 >
Dense control valve parts dataset for industrial object detection
Information Sciences | 更新时间:2024-05-08
    • Dense control valve parts dataset for industrial object detection

    • 一项针对工业实际场景的研究取得了重要进展。该研究团队发布了名为PD4CV(Part Detection for Control Valve)2023的密集控制阀零件数据集,为工业生产中的自动目标检测提供了新的资源。该数据集源自控制阀生产车间,包含了9类零件、510张工盘图像和15015个零件样本,具有密集摆放、遮挡、尺寸差异大、外形相似等特点,为自动目标检测带来了诸多挑战。通过对比实验,研究团队发现一般场景数据集和特定工业场景数据集难以应对PD4CV2023数据集的特殊性。然而,一系列目标检测算法在该数据集上的综合对比验证了其有效性,显示出PD4CV2023数据集在一般性目标检测、多尺度目标检测、小规模、不均衡数据下目标检测中的优越性。这一研究成果为面向工业的目标检测研究提供了新的方向,有望推动工业生产中的自动化智能化进程。同时,该数据集也为相关领域的研究人员提供了宝贵的实验资源,为解决工业自动化中的目标检测问题奠定了坚实的基础。
    • Optics and Precision Engineering   Vol. 32, Issue 8, Pages: 1241-1251(2024)
    • DOI:10.37188/OPE.20243208.1241    

      CLC: TP391.41;TG95
    • Published:25 April 2024

      Received:22 September 2023

      Revised:14 November 2023

    扫 描 看 全 文

  • WANG Linyi,BAI Jing,LI Yanmei,et al.Dense control valve parts dataset for industrial object detection[J].Optics and Precision Engineering,2024,32(08):1241-1251. DOI: 10.37188/OPE.20243208.1241.

  •  
  •  

0

Views

19

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Review of defect detection algorithms for solar cells based on machine vision
Using image smoothing structure information to guide image inpainting
Audio object detection network with multimodal cross level feature knowledge transfer
Photovoltaic hot spot detection method incorporating knowledge distillation and attention mechanisms
Face recognition algorithm incorporating CBAM and Siamese neural network

Related Author

LIU Yuqi
WU Yiquan
ZHANG Jiajun
LIAN Jing
LIU Jizhao
DONG Zilong
ZHANG Huaikun
LIU Shibei

Related Institution

College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics
School of Electronic and Information Engineering, Lanzhou Jiaotong University
School of Information Science and Engineering, Lanzhou University
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University
College of Electrical and Control Engineering, Xi'an University of Science and Technology
0