浏览全部资源
扫码关注微信
1.安徽工业大学 电气与信息工程学院,安徽 马鞍山 243032
2.许继集团有限公司,河南 许昌 461000
Published:25 May 2024,
Received:14 December 2023,
Revised:17 January 2024,
移动端阅览
范佳铭,黄闽南,王一山等.面向电力管廊外破监测的分布式光纤传感技术研究[J].光学精密工程,2024,32(10):1433-1442.
FAN Jiaming,HUANG Minnan,WANG Yishan,et al.Research on distributed optical fiber sensing technology for power pipe corridor breakdown monitoring[J].Optics and Precision Engineering,2024,32(10):1433-1442.
范佳铭,黄闽南,王一山等.面向电力管廊外破监测的分布式光纤传感技术研究[J].光学精密工程,2024,32(10):1433-1442. DOI: 10.37188/OPE.20243210.1433.
FAN Jiaming,HUANG Minnan,WANG Yishan,et al.Research on distributed optical fiber sensing technology for power pipe corridor breakdown monitoring[J].Optics and Precision Engineering,2024,32(10):1433-1442. DOI: 10.37188/OPE.20243210.1433.
电力管廊是城市里重要的基础设施,对其结构和状态进行监测及评估备受关注。本文针对电力管廊外力破坏监测的问题,提出一种基于衰减补偿的光时域差分曲线方差阈值定位振动事件的方案,并通过实验论证了其定位外破事件的准确性。该方案基于相敏型光时域反射系统架构,根据管廊外破事件引起的光纤振动导致光时域反射曲线在该事件位置处混乱度急剧增加的现象,对不同测量序列得到的光时域反射曲线作差,然后对光纤各位置对应的差值向量数据求方差,设定方差阈值定位外破事件。同时,考虑到光纤衰减导致方差阈值随距离增加而降低的问题,采用衰减补偿算法使光纤上任意散射位置对应相同的脉冲功率水平,从而修正光纤衰减对方差阈值的影响。实验搭建了分布式光纤振动传感系统,采用脉宽为30 ns、峰值功率为30 dBm的光脉冲,在约25 km的光纤范围,获得±3 m的定位精度。电力管廊外力破坏事件,具有低频、大扰动、持续长的特点,所提出系统方案通过曲线平均抑制瑞利散射衰落噪声,结合光纤衰减补偿校正散射信号幅值,从而将振动事件引起的光信号相位变化作为探测曲线波动的主导因素,以确保对外力破坏事件不漏报、不误报。
The power pipe corridor is an important infrastructure in the city, and the monitoring and evaluation of its structure and state have attracted much attention. Aiming at the problem of external failure monitoring of power pipe corridor, this paper proposed a scheme for locating vibration events based on attenuation compensation and variance threshold of optical difference time domain curve, and proved its accuracy by experiments. This scheme was based on the phase-sensitive optical time domain reflectometry system architecture. According to the phenomenon that the optical fiber vibration caused by the broken event outside the pipe corridor leaded to a sharp increase in the confusion of the optical time domain reflectometry curve at the location of the event, the optical time domain reflectometry curve obtained from different measurement sequences was differentiated, and then the difference vector data corresponding to each position of the optical fiber was evaluated and the variance threshold was set to locate the broken event. At the same time, considering the problem that the variance threshold decreased with the increase of distance due to fiber attenuation, the attenuation compensation algorithm was used to make any scattering position on the fiber correspond to the same pulse power level, so as to correct the influence of fiber attenuation on the difference threshold. A distributed fiber-optic vibration sensing system was set up in the experiment. Optical pulses with a pulse width of 30 ns and a peak power of 30 dBm were used to obtain a positioning accuracy of ±3 m in the optical fiber range of about 25 km. The external force damage event of the power pipeline gallery has the characteristics of low frequency, strong disturbance, and long duration. The proposed system scheme suppresses Rayleigh scattering fading noise through trace averaging, and combines fiber optic attenuation compensation to correct the amplitude of the scattering signal. Therefore, the phase change of the optical signal caused by vibration events is the dominant factor in trace fluctuations to ensure that external force damage events are not missed or misreported.
电力管廊相位敏感光时域反射差分方差算法振动监测阈值定位
power pipe corridorphase sensitive optical time domain reflectometrydifference variance algorithmvibration monitoringthreshold location
钟成,翟迪,陆阳,等.基于改进灰狼算法的电力管廊覆盖优化技术[J].中国电力,2023,56(8): 68-76.
ZHONG C, ZHAI D, LU Y, et al. Coverage optimization technology of power pipe gallery based on improved gray wolf algorithm [J]. Electric Power, 2023,56(8):68-76. (in Chinese)
梁宁慧, 兰菲, 庄炀, 等. 城市地下综合管廊建设现状与存在问题[J]. 地下空间与工程学报, 2020, 16(6): 1622-1635.
LIANG N H, LAN F, ZHUANG Y, et al. Current situation and existing problems of urban utility tunnel construction[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1622-1635.(in Chinese)
中国测绘协会地下管线专业委员会.2022年全国地下管线事故统计分析报告[R].北京:北京地下管线综合管理研究中心,2023.
China Association of Surveying and Mapping Underground Pipeline Professional Committee. 2022 National Underground pipeline accident statistical analysis report [R]. Beijing: Beijing underground Pipeline Integrated Management Research Center, 2023.
梅芳. 综合管廊巡检测控及其智能调度[D]. 西安: 长安大学, 2018.
MEI F. Inspection and Control of Underground Pipelines and Intelligent Dispatching[D].Xi'an: Chang’an University, 2018. (in Chinese)
郑明雨, 郭春爽. 城市综合管廊的监控和报警系统[J]. 北方建筑, 2022, 7(2): 61-65. doi: 10.3969/j.issn.2096-2118.2022.02.016http://dx.doi.org/10.3969/j.issn.2096-2118.2022.02.016
ZHENG M Y, GUO C S. Monitoring and alarm system of urban utility tunnel[J]. Northern Architecture, 2022, 7(2): 61-65.(in Chinese). doi: 10.3969/j.issn.2096-2118.2022.02.016http://dx.doi.org/10.3969/j.issn.2096-2118.2022.02.016
腾云, 陈双, 邓洁清, 等. 智能巡检机器人系统在苏通GIL综合管廊工程中的应用[J]. 高电压技术, 2019, 45(2): 393-401.
TENG Y, CHEN S, DENG J Q, et al. Application of intelligent inspection robot system in sutong GIL utility tunnel project[J]. High Voltage Engineering, 2019, 45(2): 393-401.(in Chinese)
蒋浩. 基于Φ-OTDR的管道第三方破坏监测技术研究[D]. 杭州: 浙江大学, 2023.
JIANG H. Research on Third-Party Damage Monitoring Technology of Pipeline Based on Φ-OTDR[D].Hangzhou: Zhejiang University, 2023. (in Chinese)
张春熹, 钟翔, 李立京, 等. 基于相位敏感光时域反射计的长距离入侵探测系统[J]. 红外与激光工程, 2015, 44(2): 742. doi: 10.3969/j.issn.1007-2276.2015.02.062http://dx.doi.org/10.3969/j.issn.1007-2276.2015.02.062
ZHANG C X, ZHONG X, LI L J, et al. Long-distance intrusion sensor based on phase sensitivity optical time domain reflectometry[J]. Infrared and Laser Engineering, 2015, 44(2): 742.(in Chinese). doi: 10.3969/j.issn.1007-2276.2015.02.062http://dx.doi.org/10.3969/j.issn.1007-2276.2015.02.062
王大伟, 封皓, 杨洋, 等. 基于Ф-OTDR光纤传感技术的供水管道泄漏辨识方法[J]. 仪器仪表学报, 2017, 38(4): 830-837. doi: 10.3969/j.issn.0254-3087.2017.04.006http://dx.doi.org/10.3969/j.issn.0254-3087.2017.04.006
WANG D W, FENG H, YANG Y, et al. Study on leakage identification method of water supply pipeline based on Ф-OTDR optical fiber sensing technology[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 830-837.(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.04.006http://dx.doi.org/10.3969/j.issn.0254-3087.2017.04.006
PENG F, WU H, JIA X H, et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines[J]. Optics Express, 2014, 22(11): 13804. doi: 10.1364/oe.22.013804http://dx.doi.org/10.1364/oe.22.013804
单一男, 马智锦, 曾旭, 等. 基于分布式光纤传感技术的结构变形估计方法研究[J]. 仪器仪表学报, 2021, 42(4): 1-9.
SHAN Y N, MA Z J, ZENG X, et al. Research on structural deformation estimation based on distributed optical fiber sensing technology[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 1-9.(in Chinese)
WU H J, XIAO S K, LI X Y, et al. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR)[J]. Journal of Lightwave Technology, 2015, 33(15): 3156-3162. doi: 10.1109/jlt.2015.2421953http://dx.doi.org/10.1109/jlt.2015.2421953
LU L D, SU X C, ZHANG C L, et al. A novel distributed vibration sensor based on fading noise reduction in multi-mode fiber[J]. Sensors, 2022, 22(20): 8028. doi: 10.3390/s22208028http://dx.doi.org/10.3390/s22208028
LU L D, BU X D, WANG Q S. An optical fiber composite power cable panoramic state monitoring system for typical scene application[C]. 2021 International Conference on Power System Technology (POWERCON). Haikou, China. IEEE, 2021: 2317-2321. doi: 10.1109/powercon53785.2021.9697772http://dx.doi.org/10.1109/powercon53785.2021.9697772
吴念, 王海涛, 张宗峰, 等. 基于OPGW的输电线路覆冰广域监测方法[J]. 中国电力, 2017, 50(5): 65-70. doi: 10.11930/j.issn.1004-9649.2017.05.065.06http://dx.doi.org/10.11930/j.issn.1004-9649.2017.05.065.06
WU N, WANG H T, ZHANG Z F, et al. Research of transmission line icing wide-area monitoring based on OPGW[J]. Electric Power, 2017, 50(5): 65-70.(in Chinese). doi: 10.11930/j.issn.1004-9649.2017.05.065.06http://dx.doi.org/10.11930/j.issn.1004-9649.2017.05.065.06
张春熹, 邓卓, 王夏霄, 等. 谱减降噪法在相位敏感OTDR扰动传感系统中的应用[J]. 激光杂志, 2019, 40(3): 16-19.
ZHANG C X, DENG Z, WANG X X, et al. Application of spectral subtraction method in phase sensitive OTDR disturbance sensing system[J]. Laser Journal, 2019, 40(3): 16-19.(in Chinese)
LU Y L, ZHU T, CHEN L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249.
梁可桢, 潘政清, 周俊, 等. 一种基于相位敏感光时域反射计的多参量振动传感器[J]. 中国激光, 2012, 39(8): 0805004. doi: 10.3788/cjl201239.0805004http://dx.doi.org/10.3788/cjl201239.0805004
LIANG K Z, PAN Z Q, ZHOU J, et al. Multi-parameter vibration detection system based on phase sensitive optical time domain reflectometer[J]. Chinese Journal of Lasers, 2012, 39(8): 0805004.(in Chinese). doi: 10.3788/cjl201239.0805004http://dx.doi.org/10.3788/cjl201239.0805004
QIN Z G, CHEN L, BAO X Y. Wavelet denoising method for improving detection performance of distributed vibration sensor[J]. IEEE Photonics Technology Letters, 2012, 24(7): 542-544. doi: 10.1109/lpt.2011.2182643http://dx.doi.org/10.1109/lpt.2011.2182643
ZHU T, XIAO X H, HE Q, et al. Enhancement of SNR and spatial resolution in φ- OTDR system by using two-dimensional edge detection method[J]. Journal of Lightwave Technology, 2013, 31(17): 2851-2856. doi: 10.1109/jlt.2013.2273553http://dx.doi.org/10.1109/jlt.2013.2273553
HE H J, SHAO L Y, LI H C, et al. SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm[J]. IEEE Photonics Journal, 2017, 9(3): 6802610. doi: 10.1109/jphot.2017.2700894http://dx.doi.org/10.1109/jphot.2017.2700894
KWON Y S, NAEEM K, JEON M Y, et al. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR[C]. 2017 25th Optical Fiber Sensors Conference (OFS). Jeju, Korea (South). IEEE, 2017: 1-4. doi: 10.1117/12.2267465http://dx.doi.org/10.1117/12.2267465
BAI Y X, LIN T T, ZHONG Z C. Noise reduction method of Φ-OTDR system based on EMD-TFPF algorithm[J]. IEEE Sensors Journal, 2021, 21(21): 24084-24089. doi: 10.1109/jsen.2021.3107039http://dx.doi.org/10.1109/jsen.2021.3107039
LI D D, LOU S Q, XIN Q, et al. SNR enhancement of far-end disturbances on distributed sensor based on phase-sensitive optical time-domain reflectometry[J]. IEEE Sensors Journal, 2021, 21(2): 1957-1964. doi: 10.1109/jsen.2020.3019838http://dx.doi.org/10.1109/jsen.2020.3019838
FANG G S, XU T W, FENG S W, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 2015, 33(13): 2811-2816. doi: 10.1109/jlt.2015.2414416http://dx.doi.org/10.1109/jlt.2015.2414416
JUAREZ J C, MAIER E W, CHOI K N, et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 2005, 23(6): 2081-2087. doi: 10.1109/jlt.2005.849924http://dx.doi.org/10.1109/jlt.2005.849924
JUAREZ J C, TAYLOR H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Applied Optics, 2007, 46(11): 1968-1971. doi: 10.1364/ao.46.001968http://dx.doi.org/10.1364/ao.46.001968
魏然. 分布式埋地光纤敲击信号识别方法研究[D]. 北京: 北京邮电大学, 2018.
WEI R. Research on Knocking Signal Recognition Method of Distributed Buried Optical Fiber[D].Beijing: Beijing University of Posts and Telecommunications, 2018. (in Chinese)
刘佳. 基于偏振检测的分布式光纤振动传感研究[D]. 天津: 天津大学, 2012.
LIU J. Study on Distributed Optical Fiber Vibration Sensing Based on Polarization Detection[D].Tianjin: Tianjin University, 2012. (in Chinese)
MARIE T F B, YANG B, HAN D Z, et al. Principle and application state of fully distributed fiber optic vibration detection technology based on Φ-OTDR: a review[J]. IEEE Sensors Journal, 2021, 21(15): 16428-16442. doi: 10.1109/jsen.2021.3081459http://dx.doi.org/10.1109/jsen.2021.3081459
王爽好. 基于GPU并行计算的分布式光纤声传感信号处理研究[D]. 天津: 天津大学, 2020.
WANG S H. Research on Signal Processing of Distributed Acoustic Sensor Based on GPU Parallel Computing[D].Tianjin: Tianjin University, 2020. (in Chinese)
0
Views
29
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution