浏览全部资源
扫码关注微信
大连海事大学 信息科学技术学院,辽宁 大连 116026
E-mail: zyz_9937@dlmu.edu.cn
Published:25 May 2024,
Received:05 January 2024,
Revised:21 February 2024,
移动端阅览
吴厚德,翟予峥,王洪昌等.实时输出视频的水下主动偏振成像[J].光学精密工程,2024,32(10):1443-1455.
WU Houde,ZHAI Yuzheng,WANG Hongchang,et al.Real-time video output method for underwater active polarization imaging[J].Optics and Precision Engineering,2024,32(10):1443-1455.
吴厚德,翟予峥,王洪昌等.实时输出视频的水下主动偏振成像[J].光学精密工程,2024,32(10):1443-1455. DOI: 10.37188/OPE.20243210.1443.
WU Houde,ZHAI Yuzheng,WANG Hongchang,et al.Real-time video output method for underwater active polarization imaging[J].Optics and Precision Engineering,2024,32(10):1443-1455. DOI: 10.37188/OPE.20243210.1443.
针对在水下主动偏振成像方法中,需要机械旋转相机前的检偏器获取正交偏振态图像,导致无法实时输出去后向散射视频的问题,提出了实时输出视频的水下主动偏振成像方法。首先,本方法将正交偏振切换位置从相机端更换到光源端,而相机端的检偏器偏振状态保持不变,并论证了此改变并不影响去后向散射的效果;然后,设计了阵列正交偏振光源,即光源由偏振态正交的两组LED灯珠交错排列组成,通过独立的驱动电路分别控制两组灯珠,输出偏振态正交的偏振光,从硬件上取消了偏振态切换的机械结构;第三,设计了同步控制装置,分别控制光源输出的偏振态和相机拍照,实现了正交偏振态图像数据的采集;最后,通过流水线式主动偏振图像处理方法,实现实时的视频输出。实验结果表明,本方法可以实时输出去后向散射视频,且在去后向散射性能上,与机械式主动偏振成像方法性能接近,两者去后向散射性能的背离度均低于4%,图像EME值增长倍数最大可达17.96。本方法具有结构简单、成本低、输出帧频不受影响以及相机选择性多等优点,能够广泛应用在水下成像领域。
In the underwater active polarization imaging method, it is necessary to mechanically rotate the polarizer in front of the camera to obtain the orthogonal polarization state images, which makes it difficult to output the de-backscattering video in real time. The method of real-time video output method for underwater active polarization imaging was proposed. Firstly, the orthogonal polarization switching position was changed from the camera side to the light source side, while the polarization state of the analyzer at the camera end remained unchanged, and it was proved that this change did not affect the effect of de-backscatter. Then, the arrayed orthogonal polarization light source was designed. The light source was composed of two groups of LED lamp beads with orthogonal polarization. The two groups of LED lamp beads were controlled by an independent drive circuit to output polarized light with orthogonal polarization state, and the mechanical structure of polarization state switching was eliminated from the hardware. Third, a synchronous control device was designed to control the polarization state of the light source output and the camera to take pictures, which realized the acquisition of orthogonal polarization state image data. Finally, the pipelined active polarization image processing method was used to realize real-time video output. The experimental results show that the proposed method can output the de-backscattering video in real time, and the performance of the de-backscatter is close to that of the mechanical active polarization imaging method. The deviation degree of the de-backscattering performance of the two methods is less than 4%, and the improvement factor of the image EME value is up to 17.96. This method has the advantages of simple structure, low cost, no influence on output frame rate, and wide selectivity of the camera, and can be widely used in the underwater imaging field.
主动偏振成像去后向散射阵列正交偏振光源实时视频
active polarization imagede-backscatterarrayed orthogonal light sourcereal-time video
全向前, 陈祥子, 全永前, 等. 深海光学照明与成像系统分析及进展[J]. 中国光学, 2018, 11(2): 153-165. doi: 10.3788/co.20181102.0153http://dx.doi.org/10.3788/co.20181102.0153
QUAN X Q, CHEN X Z, QUAN Y Q, et al. Analysis and research progress of deep-sea optical illumination and imaging system[J]. Chinese Optics, 2018, 11(2): 153-165.(in Chinese). doi: 10.3788/co.20181102.0153http://dx.doi.org/10.3788/co.20181102.0153
WATSON J. Underwater visual inspection and measurement using optical holography[J]. Optics and Lasers in Engineering, 1992, 16(4): 375-390. doi: 10.1016/0143-8166(92)90098-rhttp://dx.doi.org/10.1016/0143-8166(92)90098-r
GAO S B, ZHANG M, ZHAO Q, et al. Underwater image enhancement using adaptive retinal mechanisms[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5580-5595. doi: 10.1109/tip.2019.2919947http://dx.doi.org/10.1109/tip.2019.2919947
JAFFE J S. Underwater optical imaging: the past, the present, and the prospects[J]. IEEE Journal of Oceanic Engineering, 2015, 40(3): 683-700. doi: 10.1109/joe.2014.2350751http://dx.doi.org/10.1109/joe.2014.2350751
WU H D, ZHAO M, XU W H. Underwater de-scattering imaging by laser field synchronous scanning[J]. Optics and Lasers in Engineering, 2020, 126: 105871. doi: 10.1016/j.optlaseng.2019.105871http://dx.doi.org/10.1016/j.optlaseng.2019.105871
CUI Z H, TIAN Z S, ZHANG Y C, et al. Research on streak tube imaging lidar based on photocathode range gating method[J]. Optics Communications, 2019, 432: 79-83. doi: 10.1016/j.optcom.2018.09.041http://dx.doi.org/10.1016/j.optcom.2018.09.041
陈小国, 胡锦泉. 基于颜色校正和细节保持的水下图像增强[J]. 激光与光电子学进展, 2020, 57(24): 241013. doi: 10.3788/lop57.241013http://dx.doi.org/10.3788/lop57.241013
CHEN X G, HU J Q. Underwater image enhancement based on color correction and detail preservation[J]. Laser & Optoelectronics Progress, 2020, 57(24): 241013.(in Chinese). doi: 10.3788/lop57.241013http://dx.doi.org/10.3788/lop57.241013
ZHAO X W, JIN T, QU S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94: 163-172. doi: 10.1016/j.oceaneng.2014.11.036http://dx.doi.org/10.1016/j.oceaneng.2014.11.036
HU H F, ZHAO L, HUANG B J, et al. Enhancing visibility of polarimetric underwater image by transmittance correction[J]. IEEE Photonics Journal, 2017, 9(3): 6802310. doi: 10.1109/jphot.2017.2698000http://dx.doi.org/10.1109/jphot.2017.2698000
封斐, 吴国俊, 吴亚风, 等. 基于全局估计的水下偏振成像算法[J]. 光学学报, 2020, 40(21): 2111002. doi: 10.3788/aos202040.2111002http://dx.doi.org/10.3788/aos202040.2111002
FENG F, WU G J, WU Y F, et al. Algorithm for underwater polarization imaging based on global estimation[J]. Acta Optica Sinica, 2020, 40(21): 2111002.(in Chinese). doi: 10.3788/aos202040.2111002http://dx.doi.org/10.3788/aos202040.2111002
HU H F, ZHAO L, LI X B, et al. Polarimetric image recovery in turbid media employing circularly polarized light[J]. Optics Express, 2018, 26(19): 25047-25059. doi: 10.1364/oe.26.025047http://dx.doi.org/10.1364/oe.26.025047
LIU F, HAN P L, WEI Y, et al. Deeply seeing through highly turbid water by active polarization imaging[J]. Optics Letters, 2018, 43(20): 4903-4906. doi: 10.1364/ol.43.004903http://dx.doi.org/10.1364/ol.43.004903
HU H F, ZHAO L, LI X B, et al. Underwater image recovery under the nonuniform optical field based on polarimetric imaging[J]. IEEE Photonics Journal, 2018, 10(1): 6900309. doi: 10.1109/jphot.2018.2791517http://dx.doi.org/10.1109/jphot.2018.2791517
汪杰君, 梁磊, 李树, 等. 水下目标偏振差分成像模型修正与实现[J]. 光学学报, 2019, 39(11): 1111003. doi: 10.3788/aos201939.1111003http://dx.doi.org/10.3788/aos201939.1111003
WANG J J, LIANG L, LI S, et al. Correction and implementation of polarization-difference imaging model for underwater target[J]. Acta Optica Sinica, 2019, 39(11): 1111003.(in Chinese). doi: 10.3788/aos201939.1111003http://dx.doi.org/10.3788/aos201939.1111003
WANG H Y, HU H F, JIANG J F, et al. Automatic underwater polarization imaging without background region or any prior[J]. Optics Express, 2021, 29(20): 31283-31295. doi: 10.1364/oe.434398http://dx.doi.org/10.1364/oe.434398
ZHAO Y Z, HE W J, REN H, et al. Polarization descattering imaging through turbid water without prior knowledge[J]. Optics and Lasers in Engineering, 2022, 148: 106777. doi: 10.1016/j.optlaseng.2021.106777http://dx.doi.org/10.1016/j.optlaseng.2021.106777
管今哥, 朱京平, 田恒, 等. 基于Stokes矢量的实时偏振差分水下成像研究[J]. 物理学报, 2015, 64(22): 141-147. doi: 10.7498/aps.64.224203http://dx.doi.org/10.7498/aps.64.224203
GUAN J G, ZHU J P, TIAN H, et al. Real-time polarization difference underwater imaging based on Stokes vector[J]. Acta Physica Sinica, 2015, 64(22): 141-147. (in Chinese). doi: 10.7498/aps.64.224203http://dx.doi.org/10.7498/aps.64.224203
ATKINSON GA, O’HARA NASH S, SMITH LN. Precision fibre angle inspection for carbon fibre composite structures using polarisation vision[J]. Electronics, 2021, 10(22):2765. doi: 10.3390/electronics10222765http://dx.doi.org/10.3390/electronics10222765
JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111. doi: 10.1109/48.50695http://dx.doi.org/10.1109/48.50695
TREIBITZ T, SCHECHNER Y Y. Active polarization descattering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 385-399. doi: 10.1109/tpami.2008.85http://dx.doi.org/10.1109/tpami.2008.85
张曼. 基于Tracepro的LED光照均匀性二次光学设计[J]. 扬州职业大学学报, 2020, 24(3): 38-42. doi: 10.3969/j.issn.1008-3693.2020.03.010http://dx.doi.org/10.3969/j.issn.1008-3693.2020.03.010
ZHANG M. The secondary optical design for light emitting diodes illumination uniformity based on tracepro[J]. Journal of Yangzhou Polytechnic College, 2020, 24(3): 38-42.(in Chinese). doi: 10.3969/j.issn.1008-3693.2020.03.010http://dx.doi.org/10.3969/j.issn.1008-3693.2020.03.010
AGAIAN S S, PANETTA K, GRIGORYAN A M. Transform-based image enhancement algorithms with performance measure[J]. IEEE Transactions on Image Processing, 2001, 10(3): 367-382. doi: 10.1109/83.908502http://dx.doi.org/10.1109/83.908502
DUBREUIL M, DELROT P, LEONARD I, et al. Exploring underwater target detection by imaging polarimetry and correlation techniques[J]. Applied Optics, 2013, 52(5): 997-1005. doi: 10.1364/ao.52.000997http://dx.doi.org/10.1364/ao.52.000997
0
Views
56
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution