LIU Shulin,WANG Meng,LI An,et al.Study on LIBS system for high-precision coal components rapid and quantitative analysis[J].Optics and Precision Engineering,2024,32(10):1470-1480.
LIU Shulin,WANG Meng,LI An,et al.Study on LIBS system for high-precision coal components rapid and quantitative analysis[J].Optics and Precision Engineering,2024,32(10):1470-1480. DOI: 10.37188/OPE.20243210.1470.
Study on LIBS system for high-precision coal components rapid and quantitative analysis
The rapid and high-precision quantitative analysis of coal quality components is an important link for factories to efficiently utilize energy. This article quantitatively measured the industrial characteristics of fixed carbon (FixC), ash (Ash), volatile matter (Vdaf), and calorific value (Q) of the collected coal samples using our laser induced breakdown technology coal quality rapid analyzer. The measured data were compared with manual measurement data in the laboratory, and it was verified that this method is accurate and fast in coal quality analysis. Through testing the stability and dynamic precision of the equipment, the results indicate that the rapid coal quality analyzer has high stability and meets the national standard requirements. When predicting coal samples with a distribution span of 5%~60% ash content, by increasing the sample size and increasing the prediction weight of high ash content coal samples in the model, the prediction accuracy of root mean square error RMSEP<1%, volatile matter and total sulfur RMSEP<1%, and calorific value RMSEP<0.18 MJ/kg can be achieved. The predicted results all meet the requirements of industrial analysis and can meet the application needs of industrial sites, with broad prospects for application in online coal quality detection.
SONG J C, ZHANG L, MA W G, et al. Highly stable analysis of coal calorific value using combined NIRS-XRF[J]. Opt. Precision Eng., 2023, 31(13): 1880-1889.(in Chinese). doi: 10.37188/OPE.20233113.1880http://dx.doi.org/10.37188/OPE.20233113.1880
WANG X H, GUO G Q, B Q X,et al. Determining the temperature of aluminum plasma produced by laser‐induced breakdown spectroscopy based on its ultraviolet emission spectra[J]. Microwave and Optical Technology Letters,2022, 65(5):1229-1234. doi: 10.1002/mop.33283http://dx.doi.org/10.1002/mop.33283
SHETA S, AFGAN M S, HOU Z Y, et al. Coal analysis by laser-induced breakdown spectroscopy: a tutorial review[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1047-1082. doi: 10.1039/c9ja00016jhttp://dx.doi.org/10.1039/c9ja00016j
GAFT M, SAPIR-SOFER I, MODIANO H, et al. Laser induced breakdown spectroscopy for bulk minerals online analyses[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(12): 1496-1503. doi: 10.1016/j.sab.2007.10.041http://dx.doi.org/10.1016/j.sab.2007.10.041
GAFT M, DVIR E, MODIANO H, et al. Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1177-1182. doi: 10.1016/j.sab.2008.06.007http://dx.doi.org/10.1016/j.sab.2008.06.007
ROMERO C E, DE SARO R, CRAPARO J, et al. Laser-induced breakdown spectroscopy for coal characterization and assessing slagging propensity[J]. Energy & Fuels, 2010, 24(1): 510-517. doi: 10.1021/ef900873whttp://dx.doi.org/10.1021/ef900873w
ROMERO CE, YAO Z, DE SARO R, et al. Development and Demonstration of Laser-induced breakdown spectroscopy for in-situ, on-line coal analysis[C]. International Pittsburgh Coal Conference, 2011: 912-915.
ROMERO C E, SARO R D. LIBS Analysis for Coal[M].2019.
OTTESEN D K, WANG J C F, RADZIEMSKI L J. Real-time laser spark spectroscopy of particulates in combustion environments[J]. Applied Spectroscopy, 1989, 43(6): 967-976. doi: 10.1366/0003702894203778http://dx.doi.org/10.1366/0003702894203778
OTTESEN D K, BAXTER L L, RADZIEMSKI L J, et al. Laser spark emission spectroscopy for in-situ, real-time monitoring of pulverized coal particle composition[J]. Energy & Fuels, 1991, 5(2): 304-312. doi: 10.1021/ef00026a014http://dx.doi.org/10.1021/ef00026a014
MEUZELAAR H L C. Advances in coal spectroscopy[M]. New York: Plenum Press, 1992. doi: 10.1007/978-1-4899-3671-4http://dx.doi.org/10.1007/978-1-4899-3671-4
MOULIJN JA, NATER KA, CHERMIN HA. 1987 International conference on coal science : proceedings of the 1987 international conference on coal science, Maastricht, The Netherlands[J]. Neurocomputing,1987, 71(4-6):26-30.
BLEVINS L G, SHADDIX C R, SICKAFOOSE S M, et al. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces[J]. Applied Optics, 2003, 42(30): 6107-6118. doi: 10.1364/ao.42.006107http://dx.doi.org/10.1364/ao.42.006107
DENG K L, WU J T, WANG Z, et al. Online compositional analysis in coal gasification environment using laser-induced plasma technology[C]. Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications XII. San Diego, California, USA. SPIE, 2006, 6314: 230-237. doi: 10.1117/12.681084http://dx.doi.org/10.1117/12.681084
KURIHARA M, IKEDA K, IZAWA Y, et al. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy[J]. Applied Optics, 2003, 42(30): 6159-6165. doi: 10.1364/ao.42.006159http://dx.doi.org/10.1364/ao.42.006159
STIPE C B, MILLER A L, BROWN J, et al. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust[J]. Applied Spectroscopy, 2012, 66(11): 1286-1293. doi: 10.1366/12-06671http://dx.doi.org/10.1366/12-06671
CHEN Y X. Study on Analysis Method Optimization of Coal Particle Flow Based on Laser Induced Breakdown Spectroscopy[D]. Guangzhou: South China University of Technology, 2022. (in Chinese). doi: 10.1039/d2ja00023ghttp://dx.doi.org/10.1039/d2ja00023g
CTVRTNICKOVA T, MATEO M P, YAÑEZ A, et al. Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends[J]. Applied Surface Science, 2011, 257(12): 5447-5451. doi: 10.1016/j.apsusc.2010.12.025http://dx.doi.org/10.1016/j.apsusc.2010.12.025
CHEN S H, LU J D, ZHANG B, et al. Controllable factors in detection of pulverized coal flow with LIBS[J]. Opt. Precision Eng., 2013, 21(7): 1651.(in Chinese). doi: 10.3788/ope.20132107.1651http://dx.doi.org/10.3788/ope.20132107.1651
REDOGLIO D, GOLINELLI E, MUSAZZI S, et al. A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal[J]. Spectrochimica Acta, 2016, 116: 46-50. doi: 10.1016/j.sab.2015.11.005http://dx.doi.org/10.1016/j.sab.2015.11.005
WALLIS F J, CHADWICK B L, MORRISON R J S. Analysis of lignite using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2000, 54(8): 1231-1235. doi: 10.1366/0003702001950814http://dx.doi.org/10.1366/0003702001950814
BODY D, CHADWICK B L. Simultaneous elemental analysis system using laser induced breakdown spectroscopy[J]. Review of Scientific Instruments, 2001, 72(3): 1625-1629. doi: 10.1063/1.1338486http://dx.doi.org/10.1063/1.1338486
BODY D, CHADWICK B L. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 725-736. doi: 10.1016/s0584-8547(01)00186-0http://dx.doi.org/10.1016/s0584-8547(01)00186-0
CHADWICK B L, BODY D. Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry[J]. Applied Spectroscopy, 2002, 56(1): 70-74. doi: 10.1366/0003702021954232http://dx.doi.org/10.1366/0003702021954232
NODA M, DEGUCHI Y, IWASAKI S, et al. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(4): 701-709. doi: 10.1016/s0584-8547(01)00403-7http://dx.doi.org/10.1016/s0584-8547(01)00403-7
YIN W B, ZHANG L, DONG L, et al. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants[J]. Applied Spectroscopy, 2009, 63(8): 865-872. doi: 10.1366/000370209788964458http://dx.doi.org/10.1366/000370209788964458
ZHANG L, GONG Y, LI Y F, et al. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 113: 167-173. doi: 10.1016/j.sab.2015.09.021http://dx.doi.org/10.1016/j.sab.2015.09.021
Study on the influence of temperature on the stability of aerostatic bearing with flexible structure
Cs/NF3 activation of InGaAs photocathode
Research progress of multilayer optical elements in extreme ultraviolet and vacuum ultraviolet
Mechanism and test of air hammer instability of aerostatic bearing based on phase-induced vibration
Design and fabrication of device for cell dynamic culture in microfluidic chip
Related Author
DONG Hao
MIAO Zhangyi
SUN Guangwei
ZHANG Weichao
ZHAO Xiaolong
WANG Ziheng
LI Shiman
SHI Feng
Related Institution
College of Mechanical and Electrical Engineering, Xi 'an Technological University, Xi 'an
National Key Laboratory of Science and Technology on Low-Level-Light
School of Electronic and Optical Engineering, Nanjing University of Science and Technology
Institute of Precision Optical Engineering, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, School of Physics Science and Engineering, Tongji University