浏览全部资源
扫码关注微信
江苏大学 机械工程学院,江苏 镇江 212013
Published:25 May 2024,
Received:28 December 2023,
Revised:04 February 2024,
移动端阅览
沈宗宝,孟康楠,施政等.激光烧蚀压印制备疏水铝箔表面的耐久性[J].光学精密工程,2024,32(10):1481-1495.
SHEN Zongbao,MENG Kangnan,SHI Zheng,et al.Durability of hydrophobic aluminum foil surfaces prepared by laser ablation imprinting[J].Optics and Precision Engineering,2024,32(10):1481-1495.
沈宗宝,孟康楠,施政等.激光烧蚀压印制备疏水铝箔表面的耐久性[J].光学精密工程,2024,32(10):1481-1495. DOI: 10.37188/OPE.20243210.1481.
SHEN Zongbao,MENG Kangnan,SHI Zheng,et al.Durability of hydrophobic aluminum foil surfaces prepared by laser ablation imprinting[J].Optics and Precision Engineering,2024,32(10):1481-1495. DOI: 10.37188/OPE.20243210.1481.
提出了一种激光烧蚀压印技术制备具有多级微结构的疏水铝箔表面。该技术利用激光直接辐照在工件表面,利用烧蚀诱导的冲击压印获得一级微结构,同时利用烧蚀诱导的融化材料的流动获得二级微结构。为了检验耐久性,对疏水铝箔工件进行了酸碱腐蚀实验和不同环境存储实验。实验结果表明,酸碱腐蚀会破坏工件表面的微观形貌和低表面能,因此工件接触角随着腐蚀时间增长而降低。其中碱腐蚀工件时反应比酸腐蚀剧烈得多,工件表面形貌受损也更大,工件表面在碱腐蚀16 h后就达到了超亲水状态(
<math id="M1"><mn mathvariant="normal">25</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105178&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105180&type=
4.14866638
),而酸腐蚀24 h后也依然表现为疏水性(
<math id="M2"><mn mathvariant="normal">97</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105172&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105183&type=
4.14866638
)。再次进行时效处理后,工件依然能在三周后达到稳定的疏水状态,但疏水性能比腐蚀前要差,且酸腐蚀工件的最终疏水性
<math id="M3"><mo stretchy="false">(</mo><mn mathvariant="normal">120</mn><mo>°</mo><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105174&type=
3.04800010
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105187&type=
8.12800026
比碱腐蚀工件(
<math id="M4"><mn mathvariant="normal">105</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105189&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105194&type=
5.67266655
)要好。不同存储环境对工件表面形貌几乎没有影响。存储在空气中的工件接触角无明显变化,存储在盐水中的工件丧失疏水性(
<math id="M5"><mn mathvariant="normal">87</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105192&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105195&type=
4.14866638
),存储在纯水中的工件表现比盐水稍好(
<math id="M6"><mn mathvariant="normal">96</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105197&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105213&type=
4.14866638
)。再次进行时效处理后,纯水存储的工件接触角可以恢复到
<math id="M7"><mn mathvariant="normal">135</mn><mo>°</mo><mi mathvariant="normal">左右</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105214&type=
2.96333337
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105201&type=
12.02266598
,而盐水存储的工件仅能恢复到
<math id="M8"><mn mathvariant="normal">120</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105218&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105203&type=
5.67266655
。激光烧蚀压印制备的疏水铝箔基本能够满足应对复杂环境的要求。
A laser ablation imprinting technique was proposed to prepare hydrophobic aluminum foil surfaces with multilevel microstructures. This technique used the laser to directly irradiate on the surface of the workpiece, and the primary microstructure was obtained by ablation-induced shock imprinting, and the second microstructure was obtained by the flow behavior of the ablation-induced melting material. To assess the durability, acid and alkali corrosion experiments were conducted on the hydrophobic aluminum foil workpieces, as well as storage experiments under different conditions. The experimental results show that acid and alkali corrosion destroys the micro-morphology and low surface energy of the workpiece surface, thus reducing the contact angle of the corroded workpieces as the corrosion time increases. The reaction in alkali corrosion was much more intense than in acid corrosion, causing more significant damage to the surface morphology. The surface of the workpieces reached a super-hydrophilic state after 16 h of alkali corrosion (
<math id="M9"><mn mathvariant="normal">25</mn><mo>°</mo><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105221&type=
3.55599999
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105207&type=
6.26533365
, while maintaining hydrophobicity after 24 h of acid corrosion (
<math id="M10"><mn mathvariant="normal">97</mn><mo>°</mo><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105225&type=
3.55599999
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105227&type=
6.26533365
. After aging treatment, the workpieces still achieved a stable hydrophobic state after three weeks, but the hydrophobic performance was worse than before corrosion, with acid-corroded workpieces (
<math id="M11"><mn mathvariant="normal">120</mn><mo>°</mo><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105238&type=
3.55599999
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105242&type=
8.12800026
maintaining better final hydrophobicity than alkali-corroded ones (
<math id="M12"><mn mathvariant="normal">105</mn><mo>°</mo><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105229&type=
3.55599999
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105245&type=
8.12800026
. Different storage environments had little impact on the surface morphology of the workpieces, but organic substances adsorbed on the surface dissolved in the liquid, thus affecting wettability in pure water and saltwater storage. The contact angle of workpieces stored in air showed no significant change, the workpieces stored in saline almost lose hydrophobicity (
<math id="M13"><mn mathvariant="normal">87</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105455&type=
3.04800010
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105457&type=
4.82600021
), and the samples stored in pure water perform slightly better than saline (
<math id="M14"><mn mathvariant="normal">96</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105447&type=
3.04800010
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105464&type=
4.82600021
). After another aging treatment, the contact Angle of the workpiece stored in pure water can be restored to about
<math id="M15"><mn mathvariant="normal">135</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105254&type=
3.04800010
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105255&type=
6.68866634
, while the workpiece stored in saline water can only be restored to
<math id="M16"><mn mathvariant="normal">120</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105268&type=
3.04800010
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60105269&type=
6.68866634
. The hydrophobic aluminum foil prepared by laser ablation embossing can basically meet the requirements of dealing with the complex environment.
激光烧蚀压印疏水性酸碱腐蚀多级微结构存储环境
laser ablation embossinghydrophobicacid and alkali corrosionmulti-stage microstructurestorage environment
赵欣, 黄成超, 李梦, 等. 微纳超疏水钛合金表面的制备及其性能研究[J]. 表面技术, 2023, 52(3): 360-369.
ZHAO X, HUANG C C, LI M, et al. Fabrication and properties of micro-nano superhydrophobic titanium alloy surface[J]. Surface Technology, 2023, 52(3): 360-369.(in Chinese)
BARATI DARBAND G, ALIOFKHAZRAEI M, KHORSAND S, et al. Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability[J]. Arabian Journal of Chemistry, 2020, 13(1): 1763-1802. doi: 10.1016/j.arabjc.2018.01.013http://dx.doi.org/10.1016/j.arabjc.2018.01.013
NGUYEN V H, NGUYEN B D, PHAM H T, et al. Anti-icing performance on aluminum surfaces and proposed model for freezing time calculation[J]. Scientific Reports, 2021, 11: 3641. doi: 10.1038/s41598-020-80886-xhttp://dx.doi.org/10.1038/s41598-020-80886-x
孔祥潼, 刘涛, 王树义, 等. 电动汽车热泵系统超疏水换热器抑制结霜性能研究[J]. 汽车技术, 2023(8): 34-41.
KONG X T, LIU T, WANG S Y, et al. Study on the antifrosting performance of superhydrophobic heat exchangers for electric vehicle heat pump system[J]. Automobile Technology, 2023(8): 34-41.(in Chinese)
ZHAO L, DU Z P, TAI X M, et al. One-step facile fabrication of hydrophobic SiO2 coated super-hydrophobic/super-oleophilic mesh via an improved Stöber method to efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126404. doi: 10.1016/j.colsurfa.2021.126404http://dx.doi.org/10.1016/j.colsurfa.2021.126404
LUO H, YANG M, LI D D, et al. Transparent super-repellent surfaces with low haze and high jet impact resistance[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13813-13821. doi: 10.1021/acsami.0c23055http://dx.doi.org/10.1021/acsami.0c23055
张雪梅, 梅新奇, 王广, 等. 喷涂法制备超疏水涂层及其在多种基底表面的应用研究[J]. 化工新型材料, 2022, 50(1): 277-281, 286.
ZHANG X M, MEI X Q, WANG G, et al. Preparation and application of superhydrophobic coating sprayed on the surface of various substrates[J]. New Chemical Materials, 2022, 50(1): 277-281, 286.(in Chinese)
LI H, YU S R, HAN X X. Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties[J]. Chemical Engineering Journal, 2016, 283: 1443-1454. doi: 10.1016/j.cej.2015.08.112http://dx.doi.org/10.1016/j.cej.2015.08.112
ZHANG J, WANG J, ZHANG B B, et al. Fabrication of anodized superhydrophobic 5083 aluminum alloy surface for marine anti-corrosion and anti-biofouling[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1246-1255. doi: 10.1007/s00343-020-0036-3http://dx.doi.org/10.1007/s00343-020-0036-3
LIU J P, HUANG X T, LI Y Y, et al. Formation of hierarchical CuO microcabbages as stable bionic superhydrophobic materials via a room-temperature solution-immersion process[J]. Solid State Sciences, 2008, 10(11): 1568-1576. doi: 10.1016/j.solidstatesciences.2008.02.005http://dx.doi.org/10.1016/j.solidstatesciences.2008.02.005
CHEN H S, SHEN Z B, LI P, et al. Fabrication of homogeneous multiscale microtexture surfaces on copper foil by laser shock imprinting with two-step overlapping laser shock path[J]. Journal of Manufacturing Processes, 2023, 86: 10-29. doi: 10.1016/j.jmapro.2022.12.050http://dx.doi.org/10.1016/j.jmapro.2022.12.050
NAKAJIMA A, OMIYA M, YAN J W. Generation of micro/nano hybrid surface structures on copper by femtosecond pulsed laser irradiation[J]. Nanomanufacturing and Metrology, 2022, 5(3): 274-282. doi: 10.1007/s41871-022-00135-9http://dx.doi.org/10.1007/s41871-022-00135-9
MESHRAM T, YAN J W. Formation of laser-induced periodic surface structures on reaction-bonded silicon carbide by femtosecond pulsed laser irradiation[J]. Nanomanufacturing and Metrology, 2023, 6(1): 4. doi: 10.1007/s41871-023-00184-8http://dx.doi.org/10.1007/s41871-023-00184-8
于苗苗, 翁占坤, 王冠群, 等. 液相下激光烧蚀快速制备图案化铜微纳结构[J]. 光学 精密工程, 2023, 31(15): 2248-2259. doi: 10.37188/OPE.20233115.2248http://dx.doi.org/10.37188/OPE.20233115.2248
YU M M, WENG Z K, WANG G Q, et al. Rapid fabrication of patterned Cu micro-nano structure by laser ablation in liquid[J]. Opt. Precision Eng., 2023, 31(15): 2248-2259.(in Chinese). doi: 10.37188/OPE.20233115.2248http://dx.doi.org/10.37188/OPE.20233115.2248
石惠, 林御寒, 贾天卿, 等. 基于空间光调制器的飞秒激光时空干涉在不锈钢表面高效率制备超疏水功能的仿生结构[J]. 光子学报, 2021, 50(6): 0650110.
SHI H, LIN Y H, JIA T Q, et al. Efficient processing of super-hydrophobic biomimetic structures on stainless steel surfaces by spatiotemporal interference of two femtosecond laser beams based on spatial light modulator[J]. Acta Photonica Sinica, 2021, 50(6): 0650110.(in Chinese)
范燕萍, 沈宗宝, 李品, 等. 激光预冲击提高激光动态柔性微胀形成形质量[J]. 光学 精密工程, 2022, 30(5): 584-593. doi: 10.37188/OPE.20223005.0574http://dx.doi.org/10.37188/OPE.20223005.0574
FAN Y P, SHEN Z B, LI P, et al. Improving the forming quality of laser dynamic flexible microbulging by laser pre-shocking[J]. Opt. Precision Eng., 2022, 30(5): 584-593.(in Chinese). doi: 10.37188/OPE.20223005.0574http://dx.doi.org/10.37188/OPE.20223005.0574
王霄, 邱唐标, 顾宇轩, 等. 激光间接冲击下钛箔的微成形特性[J]. 光学 精密工程, 2015, 23(3): 632. doi: 10.3788/ope.20152303.0632http://dx.doi.org/10.3788/ope.20152303.0632
WANG X, QIU T B, GU Y X, et al. Micro-forming properties of Ti foil under laser indirect shock[J]. Opt. Precision Eng., 2015, 23(3): 632.(in Chinese). doi: 10.3788/ope.20152303.0632http://dx.doi.org/10.3788/ope.20152303.0632
LU Y, GUAN Y CH, LI Y, et al. Nanosecond laser fabrication of superhydrophobic surface on 316L stainless steel and corrosion protection application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 604: 125259. doi: 10.1016/j.colsurfa.2020.125259http://dx.doi.org/10.1016/j.colsurfa.2020.125259
SHEN Z B, ZHANG L, LI P, et al. Altering the surface wettability of copper sheet using overlapping laser shock imprinting[J]. Applied Surface Science, 2021, 543: 148736. doi: 10.1016/j.apsusc.2020.148736http://dx.doi.org/10.1016/j.apsusc.2020.148736
LONG J Y, FAN P X, GONG D W, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9858-9865. doi: 10.1021/acsami.5b01870http://dx.doi.org/10.1021/acsami.5b01870
LONG J Y, LI Y, OUYANG Z Q, et al. A universal approach to recover the original superhydrophilicity of micro/nano-textured metal or metal oxide surfaces[J]. Journal of Colloid and Interface Science, 2022, 628(Pt B): 534-544. doi: 10.1016/j.jcis.2022.08.039http://dx.doi.org/10.1016/j.jcis.2022.08.039
崔继红, 蔡建平, 贾成厂. 盐雾环境下高强度铝合金的点蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(3): 197-202.
CUI J H, CAI J P, JIA C C. Pitting corrosion of high strength aluminum alloys in salt spray test[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(3): 197-202.(in Chinese)
李晶, 赵世才, 杜锋, 等. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91. doi: 10.11868/j.issn.1001-4381.2017.000954http://dx.doi.org/10.11868/j.issn.1001-4381.2017.000954
LI J, ZHAO S C, DU F, et al. Fabrication of groove and grid structure surface with superhydrophobicity and corrosion resistance by laser[J]. Journal of Materials Engineering, 2018, 46(5): 86-91.(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.000954http://dx.doi.org/10.11868/j.issn.1001-4381.2017.000954
何婉盈. 钛功能表面的超快激光微纳加工及其生物相容性研究[D]. 济南: 山东大学, 2022.
HE W Y. Fabrication and Biocompatibility of Ultrafast Laser Processed Micro/Nano Structures on Titanium Functional Surfaces[D]. Jinan: Shandong University, 2022. (in Chinese)
张蕾. 基于激光冲击压印技术制备疏水铜箔表面的研究[D]. 镇江: 江苏大学, 2022.
ZHANG L. Research on Preparation of Hydrophobic Copper Foil Surface Based on Laser Shock Imprinting Technology[D]. Zhenjiang: Jiangsu University, 2022. (in Chinese)
0
Views
9
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution