浏览全部资源
扫码关注微信
1.西南科技大学 工程技术中心,四川 绵阳 621000
2.四川省精密超精密加工工程技术研究中心,四川 成都 610200
E-mail: 715355323@qq.com
Published:25 May 2024,
Received:14 November 2023,
Revised:04 January 2024,
移动端阅览
肖晓萍,李良伟,张建飞等.基于无模型自适应算法的磁流变液水分控制[J].光学精密工程,2024,32(10):1496-1510.
XIAO Xiaoping,LI Liangwei,ZHANG Jianfei,et al.Moisture content control strategy of magnetorheological fluid based on model-free adaptive control algorithm[J].Optics and Precision Engineering,2024,32(10):1496-1510.
肖晓萍,李良伟,张建飞等.基于无模型自适应算法的磁流变液水分控制[J].光学精密工程,2024,32(10):1496-1510. DOI: 10.37188/OPE.20243210.1496.
XIAO Xiaoping,LI Liangwei,ZHANG Jianfei,et al.Moisture content control strategy of magnetorheological fluid based on model-free adaptive control algorithm[J].Optics and Precision Engineering,2024,32(10):1496-1510. DOI: 10.37188/OPE.20243210.1496.
磁流变抛光是一种去除效率稳定、无亚表面损伤的超精密加工工艺,然而,在抛光过程中,磁流变液的水分损失会改变抛光工具的特性,从而影响去除函数的稳定性。现有的水分控制策略受到磁流变液循环系统大时延、时变扰动的影响,导致水分含量存在周期性波动,使去除函数发生周期时变,进而影响加工质量与精度。本研究建立了磁流变液循环系统的传递函数模型,开展了系统特性分析,并据此设计了基于全格式动态线性化的无模型自适应控制算法,该算法能够实现非线性系统的参数自适应控制,有效抑制因时变扰动和时延引起的水分波动,为抛光过程中水分含量的稳定控制提供了一种简单有效、适用性强的控制策略。实验结果显示,采用FFDL-MFAC控制算法时,磁流变液水分波动的峰谷值(Peak-valley Value, PV)仅为0.06%,相较于使用PID减少了40%,误差绝对值的积分(Integral value of Absolute Error, IAE)减少了58.1%。有效提升了抛光过程中磁流变液水分含量的稳定性。
Magnetorheological finishing is an ultra-precision machining process with stable removal efficiency and no subsurface damage. However, the water loss of magnetorheological fluid (MR fluid) in the polishing process will change the properties of polishing tools, thus affecting the stability of removal function. The existing water control strategy is affected by the large time delay and time-varying disturbance of MR Fluid circulation system, which leads to the periodic fluctuation of water content and the periodic time-varying removal function, thus affecting the machining quality and accuracy. In this study, the transfer function model of MR fluid circulation system was established, and the characteristics of the system were analyzed. based on this, a Model-free adaptive control based on full form dynamic linearization (FFDL-MFAC) algorithm is designed. The algorithm can realize the parameter adaptive control of nonlinear system, effectively suppress the water fluctuation caused by time-varying disturbance and delay, and provide a simple, effective and applicable control strategy for the stable control of water content in the polishing process. The experimental results show that when FFDL-MFAC control algorithm is adopted, the Peak-valley value (PV) of the water fluctuation of MR Fluid is only 0.06%, which is reduced by 40% compared with PID. The Integral value of absolute error (IAE) was reduced by 58.1%. The stability of water content of MR fluid in polishing process is effectively improved.
磁流变抛光水分含量控制系统建模参数辨识无模型自适应
system modelingautomatic control strategymagnetorheological polishingwater contentmodel-free adaptive control
彭云峰, 何佳宽, 黄雪鹏, 等. 光学元件超精密磨抛加工技术研究与装备开发[J]. 光电工程, 2023, 50(4): 220097.
PENG Y F, HE J K, HUANG X P, et al. Ultra-precision grinding and polishing processing technology research and equipment development[J]. Opto-Electronic Engineering, 2023, 50(4): 220097.(in Chinese)
吴伦哲, 徐学科, 吴令奇, 等. 非球面光学元件面形误差边缘处理方法(特邀)[J]. 红外与激光工程, 2022, 51(9): 3788/IRLA20220602.
WU L Z, XU X K, WU L Q, et al. Method of edge control on surface error in aspherical optics (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 3788/IRLA20220602.(in Chinese)
LI C S, SUN L, CHEN Z X, et al. Wheel setting error modeling and compensation for arc envelope grinding of large-aperture aspherical optics[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 108. doi: 10.1186/s10033-022-00782-5http://dx.doi.org/10.1186/s10033-022-00782-5
ZHANG L M, LI W X, LU M M, et al. Material removal mechanism of fused silica glass in magnetorheological finishing[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(3): 1271-1289. doi: 10.1007/s00170-023-11970-5http://dx.doi.org/10.1007/s00170-023-11970-5
GU Y, FU B, LIN J Q, et al. A novel wheel-type vibration-magnetorheological compound finishing method[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(9): 4213-4235. doi: 10.1007/s00170-023-11034-8http://dx.doi.org/10.1007/s00170-023-11034-8
RAJPUT A S, DAS M, KAPIL S. Investigations on a hybrid chemo-magnetorheological finishing process for freeform surface quality enhancement[J]. Journal of Manufacturing Processes, 2022, 81: 522-536. doi: 10.1016/j.jmapro.2022.07.015http://dx.doi.org/10.1016/j.jmapro.2022.07.015
HARRIS D C. History of magnetorheological finishing[C]. Window and Dome Technologies and Materials XII. Orlando, Florida, USA. SPIE, 2011, 8016(4):561-566.
WANG R S, SUN C, XIU S C, et al. Experimental study on reciprocating magnetorheological polishing[J]. Industrial Lubrication and Tribology, 2022, 74(2): 164-170. doi: 10.1108/ilt-09-2021-0351http://dx.doi.org/10.1108/ilt-09-2021-0351
KORDONSKI W I, JACOBS S D. Magnetorheological finishing[J]. International Journal of modern physics B, 1996, 10(23n24): 2837-2848.
杨军, 樊炜, 海阔, 等. 锥面镜磁流变抛光去除函数畸变规律分析与演绎[J]. 光学 精密工程, 2023, 31(16): 2383-2394. doi: 10.37188/OPE.20233116.2383http://dx.doi.org/10.37188/OPE.20233116.2383
YANG J, FAN W, HAI K, et al. Distortion law analysis and deduction of removal function for magnetorheological finishing of conical mirror[J]. Opt. Precision Eng., 2023, 31(16): 2383-2394.(in Chinese). doi: 10.37188/OPE.20233116.2383http://dx.doi.org/10.37188/OPE.20233116.2383
彭栋梁. 磁流变抛光过程抛光液水分含量自动控制方法与系统研究[D]. 绵阳: 中国工程物理研究院, 2014.
PENG D L. Research on Automatic Control Method and System of Water Content of Polishing Solution in Magnetorheological Polishing Process[D]. Mianyang: China Academy of Engineering Physics, 2014. (in Chinese)
SCHINHAERL M, VOGT C, GEISS A, et al. Forces acting between polishing tool and workpiece surface in magnetorheological finishing[C]. Current Developments in Lens Design and Optical Engineering IX. San Diego, California, USA. SPIE, 2008, 7060. doi: 10.1117/12.794196http://dx.doi.org/10.1117/12.794196
SRIVASTAVA M, PANDEY P M. The influence of ultrasonic vibrations on material removal in the silicon wafer polishing using DDCAMRF: experimental investigations and process optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(6): 3198-3215. doi: 10.1177/09544062211038979http://dx.doi.org/10.1177/09544062211038979
秦北志, 杨李茗, 朱日宏, 等. 光学元件精密加工中的磁流变抛光技术工艺参数[J]. 强激光与粒子束, 2013, 25(9): 2281-2286. doi: 10.3788/hplpb20132509.2281http://dx.doi.org/10.3788/hplpb20132509.2281
QIN B Z, YANG L M, ZHU R H, et al. Polishing parameters of magnetorheological finishing for high precision optical components[J]. High Power Laser and Particle Beams, 2013, 25(9): 2281-2286.(in Chinese). doi: 10.3788/hplpb20132509.2281http://dx.doi.org/10.3788/hplpb20132509.2281
KORDONSKI W I, GOLINI D. Fundamentals of magnetorheological fluid utilization in high precision finishing[J]. Journal of Intelligent Material Systems and Structures, 1999, 10(9): 683-689. doi: 10.1106/011m-cj25-64qc-f3a6http://dx.doi.org/10.1106/011m-cj25-64qc-f3a6
KORDONSKI W I, GOLINI D, HOGAN S, et al. System for magnetorheological finishing of substrates:US19990226326[P]. US5951369A. doi: 10.1364/oft.2002.oma1http://dx.doi.org/10.1364/oft.2002.oma1
KORDONSKI W, NATKIN M, GORODKIN S. Method and apparatus for measuring and controlling solids composition of a magnetorheological fluid: US6893322[P]. 2005-05-17.
彭小强, 戴一帆, 唐宇. 基于灰色预测控制的磁流变抛光液循环控制系统[J]. 光学 精密工程, 2007, 15(1): 100-105. doi: 10.3321/j.issn:1004-924X.2007.01.017http://dx.doi.org/10.3321/j.issn:1004-924X.2007.01.017
PENG X Q, DAI Y F, TANG Y. Circulatory system for MR fluid based on gray forecast control algorithm[J]. Opt. Precision Eng., 2007, 15(1): 100-105.(in Chinese). doi: 10.3321/j.issn:1004-924X.2007.01.017http://dx.doi.org/10.3321/j.issn:1004-924X.2007.01.017
戴一帆, 李圣怡, 彭小强, 等. 可长时稳定抛光液性能的磁流变抛光液循环装置: CN101249637A[P]. 2008-08-27.
DAI Y F, LI S Y, PENG X Q, et al. Magnetic current change polishing solution circulating device capable of long-time steadily polishing solution performance: CN101249637A[P]. 2008-08-27. (in Chinese).
彭栋梁, 何建国, 黄文, 等. 磁流变抛光液磁性颗粒体积分数在线检测装置研制[J]. 传感器与微系统, 2014, 33(3): 121-124. doi: 10.3969/j.issn.1000-9787.2014.03.035http://dx.doi.org/10.3969/j.issn.1000-9787.2014.03.035
PENG D L, HE J G, HUANG W, et al. Research and fabrication of device for on-line detection of volume fraction of magnetic particle in magnetorheological polishing fluid[J]. Transducer and Microsystem Technologies, 2014, 33(3): 121-124.(in Chinese). doi: 10.3969/j.issn.1000-9787.2014.03.035http://dx.doi.org/10.3969/j.issn.1000-9787.2014.03.035
崔栋刚, 张彦斌, 苏彦民. 纯滞后过程控制算法的研究[J]. 控制工程, 2005, 12(4): 368-369, 388. doi: 10.3969/j.issn.1671-7848.2005.04.023http://dx.doi.org/10.3969/j.issn.1671-7848.2005.04.023
CUI D G, ZHANG Y B, SU Y M. On control algorithm for process with pure time delay[J]. Control Engineering of China, 2005, 12(4): 368-369, 388.(in Chinese). doi: 10.3969/j.issn.1671-7848.2005.04.023http://dx.doi.org/10.3969/j.issn.1671-7848.2005.04.023
MA X Y, Huang C Q. Data-driven approach for time-delay estimation of industrial processes[J]. ISA transactions, 2023, 137:35-38. doi: 10.1016/j.isatra.2023.01.028http://dx.doi.org/10.1016/j.isatra.2023.01.028
SUN J G, WEI Z Q, LIU X. GRU-based model-free adaptive control for industrial processes[J]. Neural Computing and Applications, 2023, 35(24): 17701-17715. doi: 10.1007/s00521-023-08652-4http://dx.doi.org/10.1007/s00521-023-08652-4
郭代银. 无模型自适应控制参数整定方法研究[D]. 北京: 北京交通大学, 2014.
GUO D Y. Parameter Tuning Methods in Model-Free Adaptive Control[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
0
Views
13
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution