浏览全部资源
扫码关注微信
1.山东科技大学 电气与自动化工程学院,山东 青岛 266590
2.南京大学 高端控制与智能运维研发中心,江苏 苏州 215163
Published:25 May 2024,
Received:19 December 2023,
Revised:15 March 2024,
移动端阅览
冯万臣,李亮,张建强.快速反射镜的系统辨识与回路成形H∞鲁棒控制[J].光学精密工程,2024,32(10):1511-1527.
FENG Wanchen,LI Liang,ZHANG Jianqiang.System identification and loop shaping H∞ robust control of voice coil actuator fast steering mirror[J].Optics and Precision Engineering,2024,32(10):1511-1527.
冯万臣,李亮,张建强.快速反射镜的系统辨识与回路成形H∞鲁棒控制[J].光学精密工程,2024,32(10):1511-1527. DOI: 10.37188/OPE.20243210.1511.
FENG Wanchen,LI Liang,ZHANG Jianqiang.System identification and loop shaping H∞ robust control of voice coil actuator fast steering mirror[J].Optics and Precision Engineering,2024,32(10):1511-1527. DOI: 10.37188/OPE.20243210.1511.
音圈式快速反射镜(Voice Coil Actuator-Fast Steering Mirror,VCA-FSM)是星间激光通信中的重要伺服机构,其基于音圈电机进行驱动,FSM内部的柔性支撑结构以及轴间相对运动使系统存在复杂耦合特性,降低了系统的控制性能。对于该问题,本文提出了一种基于模型辨识的双轴回路成形
<math id="M1"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104942&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104945&type=
4.48733330
解耦控制方法。首先,基于激励与响应数据求解系统脉冲响应序列,构造Hankel矩阵进行系统辨识;其次,考虑系统的耦合特性,基于标称模型进行双轴回路成形
<math id="M2"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104937&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104953&type=
4.48733330
鲁棒控制器的设计;最后,基于VCA-FSM伺服控制实验平台,开展方波与正弦扫频实验。实验结果表明:相较于LQG与LQR控制,本文所提出的双轴回路成形
<math id="M3"><msub><mrow><mi mathvariant="bold-italic">H</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104949&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104950&type=
4.57200003
鲁棒控制使系统
X
,
Y
轴跟踪闭环带宽分别最大提升了54.3 Hz和54.8 Hz,显著降低了系统的耦合特性。本文所提出的控制方法充分提高了VCA-FSM伺服系统的性能,实现了双轴VCA-FSM的高性能解耦控制。
The Voice Coil Actuator-Fast Steering Mirror (VCA-FSM) driven by Voice Coil Actuator is an important servo mechanism in inter-satellite laser communications. The flexible support structure inside the FSM and the relative motion between the axes cause complex coupling properties in the system and reduce the control performance of the system. For this problem, a two-axis loop shaping
<math id="M4"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104968&type=
3.72533321
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104970&type=
5.16466665
decoupling control method based on model identification was proposed in this paper. Firstly, the system impulse response sequence was solved based on the excitation and response data, and the system Hankel matrix was constructed for system identification; subsequently, considering the coupling characteristics of the system, a two-axis loop shaping
<math id="M5"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104971&type=
3.72533321
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104973&type=
5.16466665
robust controller was designed based on the nominal model; finally, step response and sine sweep experiments were carried out based on the VCA-FSM servo control experimental platform. Experimental results show that compared with LQG and LQR control, the two-axis loop shaping
<math id="M6"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104957&type=
3.72533321
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=60104974&type=
5.16466665
robust control proposed in this paper increases the
X
- and
Y
-axis tracking closed-loop bandwidth of the system by 54.3 Hz and 54.8 Hz respectively, significantly reduces the coupling characteristics of the system. The control method proposed in this paper fully improves the performance of the VCA-FSM servo system and realizes the high-performance decoupled control of the two-axis VCA-FSM.
音圈电机快速反射镜双轴耦合系统辨识H∞鲁棒控制
Voice Coil Actuator-Fast Steering Mirror(VCA-FSM)two-axis couplingsystem identificationH∞ robust control
倪迎雪, 伞晓刚, 高世杰, 等. 激光通信APT系统中快速反射镜研究[J]. 激光与红外, 2018, 48(2): 140-147. doi: 10.3969/j.issn.1001-5078.2018.02.002http://dx.doi.org/10.3969/j.issn.1001-5078.2018.02.002
NI Y X, SAN X G, GAO S J, et al. Research of fast steering mirror in laser communication APT system[J]. Laser & Infrared, 2018, 48(2): 140-147.(in Chinese). doi: 10.3969/j.issn.1001-5078.2018.02.002http://dx.doi.org/10.3969/j.issn.1001-5078.2018.02.002
HAN W W, SHAO S B, ZHANG S W, et al. Design and modeling of decoupled miniature fast steering mirror with ultrahigh precision[J]. Mechanical Systems and Signal Processing, 2022, 167: 108521. doi: 10.1016/j.ymssp.2021.108521http://dx.doi.org/10.1016/j.ymssp.2021.108521
艾志伟, 嵇建波, 李静, 等. 装配误差对快速反射镜控制精度影响及其抑制方法[J]. 红外技术, 2019, 41(8): 705-711.
AI Z W, JI J B, LI J, et al. Influence and suppression of mirror assembly error on control precision of fast steering mirror[J]. Infrared Technology, 2019, 41(8): 705-711.(in Chinese)
BROSCH A, HANKE S, WALLSCHEID O, et al. Data-driven recursive least squares estimation for model predictive current control of permanent magnet synchronous motors[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2179-2190. doi: 10.1109/tpel.2020.3006779http://dx.doi.org/10.1109/tpel.2020.3006779
叶伟琴, 戚志东, 田家欣, 等. 质子交换膜燃料电池模型的频域分数阶子空间辨识[J]. 控制理论与应用, 2022, 39(7): 1194-1202. doi: 10.7641/CTA.2021.10371http://dx.doi.org/10.7641/CTA.2021.10371
YE W Q, QI Z D, TIAN J X, et al. Frequency domain fractional subspace identification of PEMFC model[J]. Control Theory & Applications, 2022, 39(7): 1194-1202.(in Chinese). doi: 10.7641/CTA.2021.10371http://dx.doi.org/10.7641/CTA.2021.10371
陈鹏伟, 戚陈陈, 陈新, 等. 附加频率控制双馈风电场频率响应特性建模与参数辨识[J]. 电工技术学报, 2021, 36(15): 3293-3307.
CHEN P W, QI C C, CHEN X, et al. Frequency response modeling and parameter identification of doubly-fed wind farm with additional frequency control[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3293-3307.(in Chinese)
万子平, 范世珣, 马丽莎, 等. 电动缸举升伺服机构动力学建模与参数辨识[J/OL]. 控制理论与应用: 1-11[2023-11-25].
WAN Z P, FAN S X, MA L S, et al. Modeling & identification of EMA lifting servo mechanism [J/OL]. Control Theory and Applications: 1-11[2023-11-25]. (in Chinese)
于淼, 刘建昌, 王洪海, 等. 基于Laguerre滤波器的核范数子空间辨识[J]. 控制理论与应用, 2020, 37(12): 2663-2670. doi: 10.7641/CTA.2020.90847http://dx.doi.org/10.7641/CTA.2020.90847
YU M, LIU J C, WANG H H, et al. Nuclear norm subspace identification based on Laguerre filters[J]. Control Theory & Applications, 2020, 37(12): 2663-2670.(in Chinese). doi: 10.7641/CTA.2020.90847http://dx.doi.org/10.7641/CTA.2020.90847
闻成, 谭敏哲, 卢洁莹, 等. 具有柔性特性的机电伺服系统辨识[J]. 控制理论与应用, 2023, 40(4): 663-672. doi: 10.7641/CTA.2021.10452http://dx.doi.org/10.7641/CTA.2021.10452
WEN C, TAN M Z, LU J Y, et al. Identification of electromechanical servo systems with flexible characteristics[J]. Control Theory & Applications, 2023, 40(4): 663-672. (in Chinese). doi: 10.7641/CTA.2021.10452http://dx.doi.org/10.7641/CTA.2021.10452
张建强, 孙崇尚, 吴佳彬, 等. 激光通信快速反射镜系统辨识与平衡截断[J]. 控制理论与应用: 1-9[2023-11-21].
ZHANG J Q, SUN C S, WU J B, et al. System identification and balanced truncation of fast steering mirror for laser communication [J]. Control Theory and Applications: 1-9 [2023-11-21]. (in Chinese)
蔡玉生, 朱军, 石磊, 等. 大口径快速反射镜的模糊自适应PID控制[J]. 红外技术, 2021, 43(6): 523-531.
CAI Y S, ZHU J, SHI L, et al. Fuzzy adaptive PID control of large aperture fast steering mirror[J]. Infrared Technology, 2021, 43(6): 523-531.(in Chinese)
黄浦, 杨秀丽, 修吉宏, 等. 音圈致动快速反射镜的降阶自抗扰控制[J]. 光学 精密工程, 2020, 28(6): 1365-1374. doi: 10.3788/ope.20202806.1365http://dx.doi.org/10.3788/ope.20202806.1365
HUANG P, YANG X L, XIU J H, et al. Reduced-order active disturbance rejection control of fast steering mirror driven by VCA[J]. Opt. Precision Eng., 2020, 28(6): 1365-1374.(in Chinese). doi: 10.3788/ope.20202806.1365http://dx.doi.org/10.3788/ope.20202806.1365
WANG Y Q, FENG Y T, ZHANG X G, et al. A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4117-4126. doi: 10.1109/tpel.2019.2933613http://dx.doi.org/10.1109/tpel.2019.2933613
DÖRFLER F, TESI P, DE PERSIS C. On the certainty-equivalence approach to direct data-driven LQR design[J]. IEEE Transactions on Automatic Control, 2023, 68(12): 7989-7996. doi: 10.1109/tac.2023.3253787http://dx.doi.org/10.1109/tac.2023.3253787
陈庆伟, 吕朝霞, 胡维礼, 等. 基于逆系统方法的非线性内模控制[J]. 自动化学报, 2002, 28(5): 715-721.
CHEN Q W, LU Z X, HU W L, et al. Nonlinear internal model control based on inverse system method[J]. Acta Automatica Sinica, 2002, 28(5): 715-721.(in Chinese)
王瑞, 苏秀琴, 乔永明, 等. 基于双前馈+双神经网络自适应快速反射镜的解耦控制[J]. 红外与激光工程, 2021, 50(11): 3788/IRLA20210194.
WANG R, SU X Q, QIAO Y M, et al. Decoupling control of fast steering mirror based on dual feedforward +dual neural network adaptive[J]. Infrared and Laser Engineering, 2021, 50(11): 3788/IRLA20210194.(in Chinese)
CHEN N H, POTSAID B, WEN J T, et al. Modeling and control of a fast steering mirror in imaging applications[C]. 2010 IEEE International Conference on Automation Science and Engineering. Toronto, ON, Canada. IEEE, 2010: 27-32. doi: 10.1109/coase.2010.5584424http://dx.doi.org/10.1109/coase.2010.5584424
MCFARLANE D, GLOVER K. A loop-shaping design procedure using H/sub infinity/synthesis[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 759-769. doi: 10.1109/9.256330http://dx.doi.org/10.1109/9.256330
曹小涛, 杨维帆, 王瀚, 等. 基于混合灵敏度的空间望远镜次镜调整机构鲁棒控制[J]. 光学 精密工程, 2018, 26(5): 1113-1123. doi: 10.3788/ope.20182605.1113http://dx.doi.org/10.3788/ope.20182605.1113
CAO X T, YANG W F, WANG H, et al. Mixed-sensitivity-based robust control of secondary mirror adjustment mechanism for space telescopes[J]. Opt. Precision Eng., 2018, 26(5): 1113-1123.(in Chinese). doi: 10.3788/ope.20182605.1113http://dx.doi.org/10.3788/ope.20182605.1113
ZHANG Y F, ZHANG J Q, SUN C S, et al. System identification and tracking, antidisturbance composite control technology of voice coil actuator fast steering mirror[J]. IEEE Transactions on Industrial Electronics, 2023, PP(99): 1-10. doi: 10.1109/tie.2023.3342299http://dx.doi.org/10.1109/tie.2023.3342299
DAVIDSON R A, USHAKUMARI S. H-infinity loop-shaping controller for load frequency control of a deregulated power system[J]. Procedia Technology, 2016, 25: 775-784. doi: 10.1016/j.protcy.2016.08.172http://dx.doi.org/10.1016/j.protcy.2016.08.172
周子云, 高云国, 邵帅, 等. 采用柔性铰链的快速反射镜设计[J]. 光学 精密工程, 2014, 22(6): 1547. doi: 10.3788/ope.20142206.1547http://dx.doi.org/10.3788/ope.20142206.1547
ZHOU Z Y, GAO Y G, SHAO S, et al. Design of fast steering mirror using flexible hinge[J]. Opt. Precision Eng., 2014, 22(6): 1547.(in Chinese). doi: 10.3788/ope.20142206.1547http://dx.doi.org/10.3788/ope.20142206.1547
徐新行, 张贵明, 李冠楠, 等. 具有两个双轴柔性铰链的快速反射镜设计[J]. 仪器仪表学报, 2019, 40(2): 174-181.
XU X H, ZHANG G M, LI G N, et al. Design of fast steering mirror with two double-axis flexure hinges[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 174-181.(in Chinese)
LI Z B, LI L, ZHANG J Q, et al. Nonsingular Terminal Sliding Mode Control of Voice Coil Actuator Fast Steering Mirror Based on Tracking Differentiator[C]. 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA). Ningbo, China. IEEE, 2023: 1099-1105. doi: 10.1109/iciea58696.2023.10241813http://dx.doi.org/10.1109/iciea58696.2023.10241813
刘斌, 王常虹, 李伟. 间隙度量与跟踪系统中的鲁棒控制器设计[J]. 控制与决策, 2010, 25(11): 1713-1718.
LIU B, WANG C H, LI W. Gap metric and robust controller design in tracking systems[J]. Control and Decision, 2010, 25(11): 1713-1718.(in Chinese)
ZHOU K M, DOYLE J C. Essentials of Robust Control[M]. Upper Saddle River, NJ: Prentice Hall, 1998.
0
Views
35
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution