浏览全部资源
扫码关注微信
1.西安建筑科技大学 信息与控制工程学院,陕西 西安 710055
2.西安市建筑制造智动化技术重点实验室,陕西 西安 710055
Published:25 May 2024,
Received:14 November 2023,
Revised:04 January 2024,
移动端阅览
刘光辉,单哲,杨塬海等.GCN引导模型视点的光学遥感道路提取网络[J].光学精密工程,2024,32(10):1552-1566.
LIU Guanghui,SHAN Zhe,YANG Yuanhai,et al.Optical remote sensing road extraction network based on GCN guided model viewpoint[J].Optics and Precision Engineering,2024,32(10):1552-1566.
刘光辉,单哲,杨塬海等.GCN引导模型视点的光学遥感道路提取网络[J].光学精密工程,2024,32(10):1552-1566. DOI: 10.37188/OPE.20243210.1552.
LIU Guanghui,SHAN Zhe,YANG Yuanhai,et al.Optical remote sensing road extraction network based on GCN guided model viewpoint[J].Optics and Precision Engineering,2024,32(10):1552-1566. DOI: 10.37188/OPE.20243210.1552.
在光学遥感图像中,道路易受遮挡物、铺装材料以及周围环境等多重因素的影响,导致其特征模糊不清。然而,现有道路提取方法即使增强其特征感知能力,仍在特征模糊区域存在大量误判。为解决上述问题,本文提出基于GCN引导模型视点的道路提取网络(RGGVNet)。RGGVNet采用编解码结构,并设计基于GCN的视点引导模块(GVPG)在编解码器的连接处反复引导模型视点,从而增强对特征模糊区域的关注。GVPG利用GCN信息传播过程具有平均特征权重的特性,将特征图中不同区域道路显著性水平作为拉普拉斯矩阵,参与到GCN信息传播从而实现引导模型视点。同时,提出密集引导视点策略(DGVS),采用密集连接的方式将编码器、GVPG和解码器相互连接,确保有效引导模型视点的同时缓解优化困难。在解码阶段设计多分辨率特征融合(MRFF)模块,最小化不同尺度道路特征在特征融合和上采样过程中的信息偏移和损失。在两个公开遥感道路数据集中,本文方法
IoU
分别达到65.84%和69.36%,
F1-score
分别达到79.40%和81.90%。从定量和定性两方面实验结果可以看出,本文所提方法性能优于其他主流方法。
In optical remote sensing images, roads are easily affected by multiple factors such as obstructions, pavement materials, and surrounding environments, resulting in blurred featur
es. However, even if existing road extraction methods enhance their feature perception capabilities, they still suffer from a large number of misjudgments in feature-blurred areas. To address the above issues, this paper proposed the road extraction network based on GCN guided model viewpoint (RGGVNet). RGGVNet adopted the encoder-decoder structure and designed a GCN based viewpoint guidance module (GVPG) to repeatedly guide the model viewpoint at the connection of the encoder and decoder, thereby enhancing attention to feature blurred areas. GVPG took advantage of the fact that the GCN information propagation process had the characteristic of average feature weight, used the road salience levels in different areas as a Laplacian matrix, and participated in GCN information propagation to realize the guidance model perspective. At the same time, a dense guidance viewpoint strategy (DGVS) was proposed, which uses dense connections to connect the encoder, GVPG module, and decoder to each other to ensure effective guidance of model viewpoints while alleviating optimization difficulties. In the decoding stage, a multi-resolution feature fusion module (MRFF) was designed to minimize the information offset and loss of road features of different scales in the feature fusion and upsampling process. In two public remote sensing road datasets, the
IoU
of our method reached 65.84% and 69.36%, respectively, and the
F1-score
reached 79.40% and 81.90%, respectively. It can be seen from the quantitative and qualitative experimental results that the performance of our method is superior to other mainstream methods.
光学遥感图像道路提取深度神经网络图卷积网络
optical remote sensing imagesroad extractiondeep neural networkgraph convolution network
贾建鑫, 孙海彬, 蒋长辉, 等. 多源遥感数据的道路提取技术研究现状及展望[J]. 光学 精密工程, 2021, 29(2): 430-442. doi: 10.37188/OPE.20212902.0430http://dx.doi.org/10.37188/OPE.20212902.0430
JIA J X, SUN H B, JIANG C H, et al. Road extraction technology based on multi-source remote sensing:[J]. Opt. Precision Eng., 2021, 29(2): 430-442.(in Chinese). doi: 10.37188/OPE.20212902.0430http://dx.doi.org/10.37188/OPE.20212902.0430
姚凯旋, 曹飞龙. 基于多输入密集连接神经网络的遥感图像时空融合算法[J]. 模式识别与人工智能, 2019, 32(5): 429-435. doi: 10.16451/j.cnki.issn1003-6059.201905005http://dx.doi.org/10.16451/j.cnki.issn1003-6059.201905005
YAO K X, CAO F L. Spatial-temporal fusion algorithm for remote sensing images based on multi-input dense connected neural network[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(5): 429-435.(in Chinese). doi: 10.16451/j.cnki.issn1003-6059.201905005http://dx.doi.org/10.16451/j.cnki.issn1003-6059.201905005
VALERO S, CHANUSSOT J, BENEDIKTSSON J A, et al. Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images[J]. Pattern Recognition Letters, 2010, 31(10): 1120-1127. doi: 10.1016/j.patrec.2009.12.018http://dx.doi.org/10.1016/j.patrec.2009.12.018
CHAUDHURI D, KUSHWAHA N K, SAMAL A. Semi-automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(5): 1538-1544. doi: 10.1109/jstars.2012.2199085http://dx.doi.org/10.1109/jstars.2012.2199085
GRINIAS I, PANAGIOTAKIS C, TZIRITAS G. MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 145-166. doi: 10.1016/j.isprsjprs.2016.10.010http://dx.doi.org/10.1016/j.isprsjprs.2016.10.010
SHAO Y Z, GUO B X, HU X Y, et al. Application of a fast linear feature detector to road extraction from remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(3): 626-631. doi: 10.1109/jstars.2010.2094181http://dx.doi.org/10.1109/jstars.2010.2094181
POULLIS C. Tensor-Cuts: a simultaneous multi-type feature extractor and classifier and its application to road extraction from satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95: 93-108. doi: 10.1016/j.isprsjprs.2014.06.006http://dx.doi.org/10.1016/j.isprsjprs.2014.06.006
MABOUDI M, AMINI J, HAHN M, et al. Road network extraction from VHR satellite images using context aware object feature integration and tensor voting[J]. Remote Sensing, 2016, 8(8): 637. doi: 10.3390/rs8080637http://dx.doi.org/10.3390/rs8080637
SHELHAMER E, LONG J, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2017: 640-651. doi: 10.1109/tpami.2016.2572683http://dx.doi.org/10.1109/tpami.2016.2572683
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. doi: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28
CHAURASIA A, CULURCIELLO E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]. 2017 IEEE Visual Communications and Image Processing (VCIP). St. Petersburg, FL, USA. IEEE, 2017: 1-4. doi: 10.1109/vcip.2017.8305148http://dx.doi.org/10.1109/vcip.2017.8305148
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. Computer Vision-ECCV 2018: 15th European Conference, Munich, Germany,8-14, 2018, Proceedings, Part VII. ACM, 2018: 833–851. doi: 10.1007/978-3-030-01234-2_49http://dx.doi.org/10.1007/978-3-030-01234-2_49
BUSLAEV A, SEFERBEKOV S, IGLOVIKOV V, et al. Fully convolutional network for automatic road extraction from satellite imagery[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, USA. IEEE, 2018: 197-1973. doi: 10.1109/cvprw.2018.00035http://dx.doi.org/10.1109/cvprw.2018.00035
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770-778. doi: 10.1109/cvpr.2016.90http://dx.doi.org/10.1109/cvpr.2016.90
XIN J, ZHANG X C, ZHANG Z Q, et al. Road extraction of high-resolution remote sensing images derived from DenseUNet[J]. Remote Sensing, 2019, 11(21): 2499. doi: 10.3390/rs11212499http://dx.doi.org/10.3390/rs11212499
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 2261-2269. doi: 10.1109/cvpr.2017.243http://dx.doi.org/10.1109/cvpr.2017.243
WU Q Q, LUO F, WU P H, et al. Automatic road extraction from high-resolution remote sensing images using a method based on densely connected spatial feature-enhanced pyramid[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3-17. doi: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28
WANG Y, SEO J, JEON T. NL-LinkNet: toward lighter but more accurate road extraction with nonlocal operations[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3000105. doi: 10.1109/lgrs.2021.3050477http://dx.doi.org/10.1109/lgrs.2021.3050477
ZHANG Z X, SUN X, LIU Y X. GMR-net: road-extraction network based on fusion of local and global information[J]. Remote Sensing, 2022, 14(21): 5476. doi: 10.3390/rs14215476http://dx.doi.org/10.3390/rs14215476
JIE Y S, HE H Y, XING K, et al. MECA-net: a MultiScale feature encoding and long-range context-aware network for road extraction from remote sensing images[J]. Remote Sensing, 2022, 14(21): 5342. doi: 10.3390/rs14215342http://dx.doi.org/10.3390/rs14215342
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Advances in Neural Information Processing Systems, California, USA, 2017, 30: 6000–6010.
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[EB/OL]. 2020: arXiv: 2010.11929. http://arxiv.org/abs/2010.11929http://arxiv.org/abs/2010.11929
WAN J, XIE Z, XU Y Y, et al. DA-RoadNet: a dual-attention network for road extraction from high resolution satellite imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6302-6315. doi: 10.1109/jstars.2021.3083055http://dx.doi.org/10.1109/jstars.2021.3083055
DAI L, ZHANG G Y, ZHANG R T. RADANet: road augmented deformable attention network for road extraction from complex high-resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5602213. doi: 10.1109/tgrs.2023.3237561http://dx.doi.org/10.1109/tgrs.2023.3237561
XU Q X, LONG C, YU L, et al. Road extraction with satellite images and partial road maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4501214. doi: 10.1109/tgrs.2023.3261332http://dx.doi.org/10.1109/tgrs.2023.3261332
LUO L, WANG J X, CHEN S B, et al. BDTNet: road extraction by Bi-direction transformer from remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 1998, 19: 2505605.
ZHANG Z, MIAO C L, LIU C A, et al. DCS-TransUperNet: road segmentation network based on CSwin transformer with dual resolution[J]. Applied Sciences, 2022, 12(7): 3511. doi: 10.3390/app12073511http://dx.doi.org/10.3390/app12073511
LIU X Z, WANG Z Y, WAN J T, et al. RoadFormer: road extraction using a swin transformer combined with a spatial and channel separable convolution[J]. Remote Sensing, 2023, 15(4): 1049. doi: 10.3390/rs15041049http://dx.doi.org/10.3390/rs15041049
SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks: Visualising image classification models and saliency maps[J]. 2nd International Conference on Learning Representations, ICLR 2014-Workshop Track Proceedings, 2014: 1-8.
ZEILER M D, FERGUS R. Visualizing and Understanding Convolutional Networks[M]. Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 818-833. doi: 10.1007/978-3-319-10590-1_53http://dx.doi.org/10.1007/978-3-319-10590-1_53
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. doi: 10.1007/s11263-019-01228-7http://dx.doi.org/10.1007/s11263-019-01228-7
LIU Z, MAO H Z, WU C Y, et al. A convnet for the 2020s[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 11966-11976. doi: 10.1109/cvpr52688.2022.01167http://dx.doi.org/10.1109/cvpr52688.2022.01167
LI Z H, GU T C, LI B, et al. ConvNeXt-based fine-grained image classification and bilinear attention mechanism model[J]. Applied Sciences, 2022, 12(18): 9016. doi: 10.3390/app12189016http://dx.doi.org/10.3390/app12189016
ZHOU J J, ZHANG B H, YUAN X L, et al. YOLO-CIR: the network based on YOLO and ConvNeXt for infrared object detection[J]. Infrared Physics and Technology, 2023, 131: 104703. doi: 10.1016/j.infrared.2023.104703http://dx.doi.org/10.1016/j.infrared.2023.104703
HAN Z M, JIAN M W, WANG G G. ConvUNeXt: an efficient convolution neural network for medical image segmentation[J]. Knowledge-Based Systems, 2022, 253: 109512. doi: 10.1016/j.knosys.2022.109512http://dx.doi.org/10.1016/j.knosys.2022.109512
KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[EB/OL]. 2016: arXiv: 1609.02907. http://arxiv.org/abs/1609.02907http://arxiv.org/abs/1609.02907. doi: 10.48550/arXiv.1609.02907http://dx.doi.org/10.48550/arXiv.1609.02907
LI Y, GUPTA A. Beyond grids: learning graph representations for visual recognition[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems. 3-8,2018, Montréal, Canada. ACM, 2018: 9245-9255.
LIU Q H, KAMPFFMEYER M, JENSSEN R, et al. Self-constructing graph convolutional networks for semantic labeling[C]. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, HI, USA. IEEE, 2020: 1801-1804. doi: 10.1109/igarss39084.2020.9324719http://dx.doi.org/10.1109/igarss39084.2020.9324719
LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1. doi: 10.1609/aaai.v32i1.11604http://dx.doi.org/10.1609/aaai.v32i1.11604
XU K, LI C T, TIAN Y L, et al. Representation Learning on Graphs with Jumping Knowledge Networks[EB/OL]. 2018: arXiv: 1806.03536. http://arxiv.org/abs/1806.03536http://arxiv.org/abs/1806.03536
MNIH V. Machine Learning for Aerial Image Labeling[M]. Canada: University of Toronto, 2013.
DEMIR I, KOPERSKI K, LINDENBAUM D, et al. DeepGlobe 2018: a challenge to parse the earth through satellite images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, USA. IEEE, 2018: 172-17209. doi: 10.1109/cvprw.2018.00031http://dx.doi.org/10.1109/cvprw.2018.00031
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]. 2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA, USA. IEEE, 2016: 565-571. doi: 10.1109/3dv.2016.79http://dx.doi.org/10.1109/3dv.2016.79
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/tpami.2016.2644615http://dx.doi.org/10.1109/tpami.2016.2644615
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 6230-6239. doi: 10.1109/cvpr.2017.660http://dx.doi.org/10.1109/cvpr.2017.660
WANG S, YANG H, WU Q Q, et al. An improved method for road extraction from high-resolution remote-sensing images that enhances boundary information[J]. Sensors, 2020, 20(7): 2064. doi: 10.3390/s20072064http://dx.doi.org/10.3390/s20072064
LI J, LIU Y, ZHANG Y D, et al. Cascaded attention DenseUNet (CADUNet) for road extraction from very-high-resolution images[J]. ISPRS International Journal of Geo-Information, 2021, 10(5): 329. doi: 10.3390/ijgi10050329http://dx.doi.org/10.3390/ijgi10050329
WANG Y, PENG Y X, LI W, et al. DDU-net: dual-decoder-U-net for road extraction using high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4412612. doi: 10.1109/tgrs.2022.3197546http://dx.doi.org/10.1109/tgrs.2022.3197546
ZHOU L C, ZHANG C, WU M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, USA. IEEE, 2018: 192-1924. doi: 10.1109/cvprw.2018.00034http://dx.doi.org/10.1109/cvprw.2018.00034
YANG M X, YUAN Y, LIU G C. SDUNet: road extraction via spatial enhanced and densely connected UNet[J]. Pattern Recognition, 2022, 126: 108549. doi: 10.1016/j.patcog.2022.108549http://dx.doi.org/10.1016/j.patcog.2022.108549
MEI J, LI R J, GAO W, et al. CoANet: connectivity attention network for road extraction from satellite imagery[J]. IEEE Transactions on Image Processing, 2021, 30: 8540-8552. doi: 10.1109/tip.2021.3117076http://dx.doi.org/10.1109/tip.2021.3117076
SHAO S W, XIAO L X, LIN L P, et al. Road extraction convolutional neural network with embedded attention mechanism for remote sensing imagery[J]. Remote Sensing, 2022, 14(9): 2061. doi: 10.3390/rs14092061http://dx.doi.org/10.3390/rs14092061
0
Views
13
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution