您当前的位置:
首页 >
文章列表页 >
Worm surface defect detection with fusion of multi-scale features
Information Sciences | 更新时间:2024-07-10
    • Worm surface defect detection with fusion of multi-scale features

    • 在自动化检测领域,研究者设计了基于机器视觉的蜗杆缺陷采集系统,改进YOLOv7算法,引入数据增广、注意力机制和SIOU损失函数,显著提升了检测精度,为蜗杆表面缺陷自动化检测提供了高效解决方案。
    • Optics and Precision Engineering   Vol. 32, Issue 11, Pages: 1746-1758(2024)
    • DOI:10.37188/OPE.20243211.1746    

      CLC: TP394.1;TH691.9
    • Published:10 June 2024

      Received:08 January 2024

      Revised:20 February 2024

    扫 描 看 全 文

  • WANG Lei,GUO Wenping,CHEN Xinwei,et al.Worm surface defect detection with fusion of multi-scale features[J].Optics and Precision Engineering,2024,32(11):1746-1758. DOI: 10.37188/OPE.20243211.1746.

  •  
  •  

0

Views

33

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Defect detection of cylindrical surface of metal pot combining attention mechanism
Detection of conductive multi-particles based on circular convolutional neural network
Adaptive Discontinuity Segmentation in Phase Measurement
Parameter-free parallel fast measurement of fine-pitch spur gears

Related Author

WANG Lei
GUO Wenping
QIAO Jian
CHEN Nengda
WU Yanxiong
WU Yang
YANG Jingwei
LUO Chen

Related Institution

School of Electrical and Mechanical Engineering and Automation, Foshan University
Ji Hua Laboratory
School of Physics and Optoelectronic Engineering, Foshan University
Wuxi Shangshi-finevision Technology Co., Ltd
College of Mechanical Engineering, Southeast University
0