浏览全部资源
扫码关注微信
1.大连理工大学 辽宁省微纳米系统重点实验室,辽宁 大连 116024
2.大连理工大学 宁波研究院,辽宁 大连 116024
3.大连船舶重工集团有限公司,辽宁 大连 116011
Published:25 June 2024,
Received:23 March 2024,
Revised:20 April 2024,
移动端阅览
辛润宏,张然,褚金奎等.基于Snell窗及偏振模式的水下载体航姿测量[J].光学精密工程,2024,32(12):1801-1811.
XIN Runhong,ZHANG Ran,CHU Jinkui,et al.A method for underwater vehicle attitude measurement based on Snell’s window and its polarization mode[J].Optics and Precision Engineering,2024,32(12):1801-1811.
辛润宏,张然,褚金奎等.基于Snell窗及偏振模式的水下载体航姿测量[J].光学精密工程,2024,32(12):1801-1811. DOI: 10.37188/OPE.20243212.1801.
XIN Runhong,ZHANG Ran,CHU Jinkui,et al.A method for underwater vehicle attitude measurement based on Snell’s window and its polarization mode[J].Optics and Precision Engineering,2024,32(12):1801-1811. DOI: 10.37188/OPE.20243212.1801.
提出了一种在水下通过Snell窗获得偏振分布模式与天顶点坐标,进而得到水下载体的航姿信息(即航向角、横滚角与俯仰角)的方法。在载体上安装鱼眼镜头与偏振相机,在水下拍摄天空,得到偏振角分布模式。建立小孔成像模型得到相机的内外参数矩阵以及镜头畸变系数,对偏振角分布模式进行畸变校正,进而得到太阳子午线特征区域,使用Canny算子检测得到特征区域边缘,由霍夫直线检测算法计算出太阳子午线与水下载体体轴夹角,得到航向角。通过实验得到不同光入射角与偏振角误差的函数关系,进行误差补偿,减小由于鱼眼镜头改变入射光偏振态带来的偏振角测量误差,进而提高太阳子午线与水下载体体轴夹角的测量精度。利用灰度阈值检测算法筛选出图像中的天顶点坐标,进而计算载体的横滚角与俯仰角,经过实验验证了算法的准确性。搭建了模拟水下环境的实验平台,实验结果表明:该方法得到的航向角平均绝对误差为0.530 3°。在[
-
50°,50°]角度范围内,横滚角与俯仰角平均绝对误差为0.754 4°与0.621 3°,满足水下导航的精度需求。
This paper proposed a method to observe the celestial polarization pattern and the coordinate of zenith through Snell’s window, which consequently yields the naviga
tion information of the carrier, i.e., yaw angle, roll angle, and pitch angle. A fish-eye lens and an imaging polarimeter were installed on the carrier to capture the sky and obtain the celestial polarization pattern. First, a pinhole imaging model was established to obtain both the internal and external parameter matrices of the camera and the distortion coefficients of the lens. A distortion correction was applied to the polarization pattern to obtain the solar meridian characteristic region. A Canny operator was used to detect the edge of the characteristic region, after which a Hough line detection algorithm was used to calculate the angle between the solar meridian and the carrier's axis, yielding the Yaw angle. Second, the relationship between incidence angles and the error of polarization angle was abstracted as a function through experiments. Error compensation based on the function was performed to reduce the measurement error of the polarization angle caused by changes in the incident light polarization state of the fish-eye lens, hence improving the accuracy of measuring the angle between the solar meridian and the carrier axis. Third, the grayscale threshold detection algorithm was used to calculate the coordinates of the zenith in the image, and therefore the roll and pitch angles of the carrier. The accuracy of the algorithm was verified through experiments. Lastly, an experimental platform was constructed to simulate an underwater environment. Results show that the mean absolute error of the yaw angle calculated by this method is 0.530 3°. Within the range of [
-
50°, 50°], the mean absolute error of the roll angle and pitch angle are 0.754 4° and 0.621 3°, respectively, which meets the accuracy requirements of underwater navigation.
水下导航Snell窗偏振分布图像处理
underwater navigationsnell windowpolarization distributionimage processing
范刚, 张亚, 赵河明, 等. 水下机器人定位导航技术发展现状与分析[J]. 兵器装备工程学报, 2022, 43(3): 22-29. doi: 10.11809/bqzbgcxb2022.03.003http://dx.doi.org/10.11809/bqzbgcxb2022.03.003
FAN G, ZHANG Y, ZHAO H M, et al. Underwater robot positioning and navigation technology development status and analysis[J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 22-29.(in Chinese). doi: 10.11809/bqzbgcxb2022.03.003http://dx.doi.org/10.11809/bqzbgcxb2022.03.003
褚金奎, 林木音, 王寅龙, 等. 偏振光传感器的无人船导航与编队应用[J]. 光学 精密工程, 2020, 28(8): 1661-1669. doi: 10.3788/OPE.20202808.1661http://dx.doi.org/10.3788/OPE.20202808.1661
CHU J K, LIN M Y, WANG Y L, et al. Application of polarization sensor to unmanned surface vehicle navigation and formation[J]. Opt. Precision Eng., 2020, 28(8): 1661-1669.(in Chinese). doi: 10.3788/OPE.20202808.1661http://dx.doi.org/10.3788/OPE.20202808.1661
张然, 桂心远, 成昊远, 等. 基于偏振成像的低光照强背景噪声下的目标位姿估计[J]. 光学 精密工程, 2021, 29(4): 647-655. doi: 10.37188/ope.20212904.0647http://dx.doi.org/10.37188/ope.20212904.0647
ZHANG R, GUI X Y, CHENG H Y, et al. Target pose estimation based on polarization imaging in low light and strong background noise[J]. Opt. Precision Eng., 2021, 29(4): 647-655.(in Chinese). doi: 10.37188/ope.20212904.0647http://dx.doi.org/10.37188/ope.20212904.0647
LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376-4389. doi: 10.1109/tip.2019.2955241http://dx.doi.org/10.1109/tip.2019.2955241
褚金奎, 张培奇, 成昊远, 等. 基于特定偏振态成像的水下图像去散射方法[J]. 光学 精密工程, 2021, 29(5): 1207-1215. doi: 10.37188/OPE.20212905.1207http://dx.doi.org/10.37188/OPE.20212905.1207
CHU J K, ZHANG P Q, CHENG H Y, et al. De-scattering method of underwater image based on imaging of specific polarization state[J]. Opt. Precision Eng., 2021, 29(5): 1207-1215.(in Chinese). doi: 10.37188/OPE.20212905.1207http://dx.doi.org/10.37188/OPE.20212905.1207
巩文哲, 褚金奎, 成昊远, 等. 基于无监督学习和注意力机制的水下偏振图像融合[J]. 光学 精密工程, 2023, 31(21): 3212-3220. doi: 10.37188/OPE.20233121.3212http://dx.doi.org/10.37188/OPE.20233121.3212
GONG W Z, CHU J K, CHENG H Y, et al. Underwater polarization image fusion based on unsupervised learning and attention mechanisms[J]. Opt. Precision Eng., 2023, 31(21): 3212-3220.(in Chinese). doi: 10.37188/OPE.20233121.3212http://dx.doi.org/10.37188/OPE.20233121.3212
吴新冬, 申冲, 曹慧亮, 等. 水下仿生光磁导航技术综述[J]. 战术导弹技术, 2023(4): 13-25. doi: 10.1016/j.optcom.2024.130650http://dx.doi.org/10.1016/j.optcom.2024.130650
WU X D, SHEN C, CAO H L, et al. Survey of underwater biomimetic polarization and geomagnetic navigation technology[J]. Tactical Missile Technology, 2023(4): 13-25.(in Chinese). doi: 10.1016/j.optcom.2024.130650http://dx.doi.org/10.1016/j.optcom.2024.130650
SCHMIDT G T. Navigation sensors and systems in GNSS degraded and denied environments[J]. Chinese Journal of Aeronautics, 2015, 28(1): 1-10. doi: 10.1016/j.cja.2014.12.001http://dx.doi.org/10.1016/j.cja.2014.12.001
WANG S Z, ZHAN X Q, ZHAI Y W, et al. Highly reliable relative navigation for multi-UAV formation flight in urban environments[J]. Chinese Journal of Aeronautics, 2021, 34(7): 257-270. doi: 10.1016/j.cja.2020.05.022http://dx.doi.org/10.1016/j.cja.2020.05.022
徐博, 郝芮, 王超, 等. 水下潜航器的惯导/超短基线/多普勒测速信息融合及容错验证[J]. 光学 精密工程, 2017, 25(9): 2508-2515. doi: 10.3788/ope.20172509.2508http://dx.doi.org/10.3788/ope.20172509.2508
XU B, HAO R, WANG C, et al. INS/USBL/DVL information fusion and fault-tolerant verification for underwater vehicles[J]. Opt. Precision Eng., 2017, 25(9): 2508-2515.(in Chinese). doi: 10.3788/ope.20172509.2508http://dx.doi.org/10.3788/ope.20172509.2508
褚金奎, 田连标, 成昊远, 等. 天空光主导的波浪水面下偏振分布模型仿真[J]. 光学学报, 2020, 40(20): 2001002. doi: 10.3788/aos202040.2001002http://dx.doi.org/10.3788/aos202040.2001002
CHU J K, TIAN L B, CHENG H Y, et al. Simulation of polarization distribution model under wavy water surfaces dominated by skylight[J]. Acta Optica Sinica, 2020, 40(20): 2001002.(in Chinese). doi: 10.3788/aos202040.2001002http://dx.doi.org/10.3788/aos202040.2001002
CHENG H Y, CHU J K, ZHANG R, et al. Underwater polarization patterns considering single Rayleigh scattering of water molecules[J]. International Journal of Remote Sensing, 2020, 41(13): 4947-4962. doi: 10.1080/01431161.2019.1685725http://dx.doi.org/10.1080/01431161.2019.1685725
CHENG H Y, CHU J K, ZHANG R, et al. Simulation and measurement of the effect of various factors on underwater polarization patterns[J]. Optik, 2021, 237: 166637. doi: 10.1016/j.ijleo.2021.166637http://dx.doi.org/10.1016/j.ijleo.2021.166637
顾敬桥, 李高杰, 胡鹏伟, 等. 基于大气多次散射的波浪水下偏振模式研究[J]. 中国光学(中英文), 2023, 16(6): 1324-1332. doi: 10.37188/co.2022-0223http://dx.doi.org/10.37188/co.2022-0223
GU J Q, LI G J, HU P W, et al. The polarization mode of underwater waves based on atmospheric multiple scattering[J]. Chinese Optics, 2023, 16(6): 1324-1332.(in Chinese). doi: 10.37188/co.2022-0223http://dx.doi.org/10.37188/co.2022-0223
HORVÁTH G, VARJÚ D. Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell’s window of the flat water surface[J]. Vision Research, 1995, 35(12): 1651-1666. doi: 10.1016/0042-6989(94)00254-jhttp://dx.doi.org/10.1016/0042-6989(94)00254-j
PARKYN D C, AUSTIN J D, HAWRYSHYN C W. Acquisition of polarized-light orientation in salmonids under laboratory conditions[J]. Animal behaviour, 2003, 65(5): 893-904. doi: 10.1006/anbe.2003.2136http://dx.doi.org/10.1006/anbe.2003.2136
POWELL S B, GARNETT R, MARSHALL J, et al. Bioinspired polarization vision enables underwater geolocalization[J]. Science Advances, 2018, 4(4): eaao6841. doi: 10.1126/sciadv.aao6841http://dx.doi.org/10.1126/sciadv.aao6841
JULIEN D, STÉPHANE V, SERRES JULIEN R. An ant-inspired celestial compass applied to autonomous outdoor robot navigation[J]. Robotics and Autonomous Systems, 2018, 117: 40-56. doi: 10.1016/j.robot.2019.04.007http://dx.doi.org/10.1016/j.robot.2019.04.007
PATEL R N, CRONIN T W. Mantis shrimp navigate home using celestial and idiothetic path integration[J]. Current Biology: CB, 2020, 30(11): 1981-1987.e3. doi: 10.1016/j.cub.2020.03.023http://dx.doi.org/10.1016/j.cub.2020.03.023
HU P W, YANG J, GUO L, et al. Solar-tracking methodology based on refraction-polarization in Snell’s window for underwater navigation[J]. Chinese Journal of Aeronautics, 2022, 35(3): 380-389. doi: 10.1016/j.cja.2021.02.011http://dx.doi.org/10.1016/j.cja.2021.02.011
胡鹏伟, 杨健, 王奥博, 等. 仿虾眼水下偏振/惯性组合动态定姿方法及系统设计[C]. 中国自动化学会过程控制专业委员会, 中国自动化学会. 第33届中国过程控制会议论文集, 2022: 1.
HU P W, YANG J, WANG A B, et al. Shrimp-Eye inspired underwater polarization/ins integrated dynamic attitude determination: methodology and system development[C]. Process Control Professional Committee of China Automation Society, China Automation Society Proceedings of the 33rd China Process Control Conference School of Automation Science and Electrical Engineering, 2022: 1.(in Chinese)
张然, 蔡弘, 关乐, 等. 多云天气天空偏振定向方法[J]. 光学 精密工程, 2021, 29(7): 1499-1510. doi: 10.37188/OPE.20212907.1499http://dx.doi.org/10.37188/OPE.20212907.1499
ZHANG R, CAI H, GUAN L, et al. Polarization orientation method for cloudy sky[J]. Opt. Precision Eng., 2021, 29(7): 1499-1510.(in Chinese). doi: 10.37188/OPE.20212907.1499http://dx.doi.org/10.37188/OPE.20212907.1499
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718http://dx.doi.org/10.1109/34.888718
崔岩, 周鑫昌, 刘亚飞, 等. 基于Hough变换的太阳子午线提取方法[J]. 光学学报, 2020, 40(17): 1701002. doi: 10.3788/aos202040.1701002http://dx.doi.org/10.3788/aos202040.1701002
CUI Y, ZHOU X C, LIU Y F, et al. Solar meridian extraction method based on Hough transformation[J]. Acta Optica Sinica, 2020, 40(17): 1701002.(in Chinese). doi: 10.3788/aos202040.1701002http://dx.doi.org/10.3788/aos202040.1701002
张瑞文. 基于随机畸变补偿的水下对空成像图像复原关键技术研究[D]. 武汉: 华中科技大学, 2019.
ZHANG R W. Key Technology Research on Image Restoration for Imaging Through Water-air Interface from Underwater Based on Random Distortion Compensation[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
蔡弘, 张然, 关乐, 等. 晴朗天气下全天空域偏振定向方法[J]. 机电工程技术, 2021, 50(9): 10-13.
CAI H, ZHANG R, GUAN L, et al. Polarization orientation method for whole sky area in sunny weather[J]. Mechanical & Electrical Engineering Technology, 2021, 50(9): 10-13.(in Chinese)
0
Views
31
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution