浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
2.中国科学院大学 材料科学与光电子工程中心,北京10049
3.中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
Published:25 June 2024,
Received:28 February 2024,
Revised:09 April 2024,
移动端阅览
赵思霖,穆全全,李大禹.基于液晶光栅的大视场红外凝视成像系统设计[J].光学精密工程,2024,32(12):1824-1835.
ZHAO Silin,MU Quanquan,LI Dayu.A large field of view infrared staring imaging system based on liquid crystal grating[J].Optics and Precision Engineering,2024,32(12):1824-1835.
赵思霖,穆全全,李大禹.基于液晶光栅的大视场红外凝视成像系统设计[J].光学精密工程,2024,32(12):1824-1835. DOI: 10.37188/OPE.20243212.1824.
ZHAO Silin,MU Quanquan,LI Dayu.A large field of view infrared staring imaging system based on liquid crystal grating[J].Optics and Precision Engineering,2024,32(12):1824-1835. DOI: 10.37188/OPE.20243212.1824.
分视场成像的中波红外凝视成像系统为解决红外光学系统很难同时满足大视场、高分辨率的问题,将多个子视场分时成像于同一个探测器中,然而目前该系统还存在着无法实现无缝拼接和液晶快门阵列结构复杂的缺点。本文在此基础上提出了一种新的基于液晶光栅的大视场中波红外凝视成像系统设计。通过在一次像面处加入矩形视场光阑并将其后移,使原有的0.28
°
的视场缺失减小至0
°
,实现图像的无缝拼接。快门阵列采用双光栅快门结构,使其无需复杂的位置关系,并将液晶快门阵列放置于平行光路中,可消除其所引入的色差与偏振带来的主光线间纵向位移影响。采用所提出的方法,设计出了F数为3.25,焦距为130 mm,波长范围为4.25~4.75 μm,全视场对角线为10.8
°
的红外凝视成像系统,其各子视场单元MTF均为0.3@30 lp/mm以上。最终通过仿真结果表明,该系统具有分视场成像的功能,且成像质量良好。
To solve the problem of difficulty for infrared optical systems to simultaneously meet the requirements of large field of view and high resolution. the mid wave infrared staring imaging system with split field of view imaging images multiple sub fields of view at different times in the same detector. However, the system still has the drawbacks of inability to achieve seamless splicing and complex structure of liquid crystal shutter arrays. On this basis, this article proposed a new design of a large field of view mid wave infrared staring imaging system based on liquid crystal polarization gratings. By adding a rectangular stop at the first image plane and moving it backwards, the original 0.28
°
field of view loss was reduced to 0
°
.It achieved seamless splicing.The shutter array adopted a dual grating shutter structure, which eliminates the need for complex positional relationships. The liquid crystal shutter array was placed in a pa
rallel light path to eliminate the longitudinal displacement between the main light rays caused by chromatic aberration and polarization.Using the proposed method, a mid-wave infrared staring imaging system was designed with an F-number of 3.25, a focal length of 130 mm, a wavelength range of 4.25 μm to 4.75 μm, and a full field of view diagonal of 10.8
°
. The MTF of each sub field of view unit is above 0.3@30 lp/mm. The final simulation results show that the system has the function of split field imaging and fine imaging quality.
光学设计冷反射液晶光栅视场分割
optical designnarcissusliquid crystal gratingfield of view segmentation
赵俊, 王晓璇, 李雄军, 等. 碲镉汞红外探测器研究进展[J]. 中国科学: 技术科学, 2023, 53(9): 1419-1433. doi: 10.1360/sst-2022-0457http://dx.doi.org/10.1360/sst-2022-0457
ZHAO J, WANG X X, LI X J, et al. Development of a mercury cadmium telluride infrared detector[J]. Scientia Sinica (Technologica), 2023, 53(9): 1419-1433.(in Chinese). doi: 10.1360/sst-2022-0457http://dx.doi.org/10.1360/sst-2022-0457
HACKWELL J A, WARREN D W, BONGIOVI R P, et al. LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote Sensing[C]. Imaging Spectrometry II. Denver, CO. SPIE, 1996, 2819: 102-107. doi: 10.1117/12.258057http://dx.doi.org/10.1117/12.258057
SUN C S, DING Y L, WANG D J, et al. Backscanning step and stare imaging system with high frame rate and wide coverage[J]. Applied Optics, 2015, 54(16): 4960-4965. doi: 10.1364/ao.54.004960http://dx.doi.org/10.1364/ao.54.004960
何祥峰. 基于棱镜扫描的红外宽视场高分辨率成像技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
HE X F. Research on Infrared Imaging Technology Based on Prism Scanning with Wide Field and High Resolution[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
SUGIYAMA H, KOSHOUBU J, KASHIWABARA S, et al. Time-resolved step-scan infrared imaging system utilizing a linear array detector[J]. Applied spectroscopy. 2008, 62(1): 17-23. doi: 10.1366/000370208783412609http://dx.doi.org/10.1366/000370208783412609
刘毓博. 机载大视场高分辨率热红外成像系统研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017. doi: 10.11972/j.issn.1001-9014.2017.03.014http://dx.doi.org/10.11972/j.issn.1001-9014.2017.03.014
LIU Y B. Research of Airborne High Resolution Thermal Infrared Imaging System with Wide Field of View[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2017. (in Chinese). doi: 10.11972/j.issn.1001-9014.2017.03.014http://dx.doi.org/10.11972/j.issn.1001-9014.2017.03.014
李文雄, 申军立, 张星祥, 等. 低温红外离轴三反准直系统设计[J]. 光学 精密工程, 2023, 31(9): 1285-1294. doi: 10.37188/OPE.20233109.1285http://dx.doi.org/10.37188/OPE.20233109.1285
LI W X, SHEN J L, ZHANG X X, et al. Design of low temperature infrared off-axis three-mirror collimation system[J]. Opt. Precision Eng., 2023, 31(9): 1285-1294.(in Chinese). doi: 10.37188/OPE.20233109.1285http://dx.doi.org/10.37188/OPE.20233109.1285
KROGMANN D, THOLL H. Infrared micro-optics technologies[C]. The International Society for Optical Engineering, SPIE, 2004, 5406: 121-132. doi: 10.1117/12.541348http://dx.doi.org/10.1117/12.541348
MASTERSON H, SERATI R, SERATI S, et al. MWIR Wide-area step and stare imager[C]. Acquisition, Tracking, Pointing, and Laser Systems Technologies XXV. Orlando, Florida, USA. SPIE, 2011: 161-166. doi: 10.1117/12.884290http://dx.doi.org/10.1117/12.884290
HOY C, STOCKLEY J, SHANE J, et al. Non-mechanical beam steering with polarization gratings: a review[J]. Crystals, 2021, 11(4): 361. doi: 10.3390/cryst11040361http://dx.doi.org/10.3390/cryst11040361
郁道银, 谈恒英. 工程光学(4版)[M]. 北京: 机械工业出版社, 2016.
YU D Y, TAN H Y. Engineering Optics 4th ed.[M]. Beijing: China Machine Press, 2016.(in Chinese)
TANG D L, SHAO Z L, XIE X, et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing[J]. Opto-Electronic Advances, 2023, 6(4): 220063. doi: 10.29026/oea.2023.220063http://dx.doi.org/10.29026/oea.2023.220063
周东淇. 液晶光栅的技术进展及应用[J]. 数字通信世界, 2019(1): 230, 242. doi: 10.3969/J.ISSN.1672-7274.2019.01.183http://dx.doi.org/10.3969/J.ISSN.1672-7274.2019.01.183
ZHOU D Q. Technical progress and application of liquid crystal grating[J]. Digital Communication World, 2019(1): 230, 242.(in Chinese). doi: 10.3969/J.ISSN.1672-7274.2019.01.183http://dx.doi.org/10.3969/J.ISSN.1672-7274.2019.01.183
陈万. 高效率宽波段液晶偏振光栅光束偏转技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.
CHEN W. Research on Beam Steering Technology of High-Efficiency Broadband Liquid Crystal Polarization Gratings[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese)
卜和阳, 虞林瑶, 田浩南, 等. 中波红外成像系统冷反射抑制[J]. 中国光学(中英文), 2023, 16(6): 1414-1423. doi: 10.37188/co.2023-0008http://dx.doi.org/10.37188/co.2023-0008
BU H Y, YU L Y, TIAN H N, et al. Narcissus suppression of medium-wave infrared imaging system[J]. Chinese Optics, 2023, 16(6): 1414-1423.(in Chinese). doi: 10.37188/co.2023-0008http://dx.doi.org/10.37188/co.2023-0008
LU K, DOBSON S J. Accurate calculation of Narcissus signatures by using finite ray tracing[J]. Applied Optics, 1997, 36(25): 6393-6398. doi: 10.1364/ao.36.006393http://dx.doi.org/10.1364/ao.36.006393
0
Views
19
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution