浏览全部资源
扫码关注微信
苏州大学 机电工程学院, 江苏 苏州 215006
Published:25 June 2024,
Received:16 January 2024,
Revised:15 March 2024,
移动端阅览
胡伟,刘吉柱,李涛等.闭式矩形静压气浮导轨快速优化设计[J].光学精密工程,2024,32(12):1879-1890.
HU Wei,LIU Jizhu,LI Tao,et al.Rapid optimization design of closed rectangular hydrostatic air flotation guideway[J].Optics and Precision Engineering,2024,32(12):1879-1890.
胡伟,刘吉柱,李涛等.闭式矩形静压气浮导轨快速优化设计[J].光学精密工程,2024,32(12):1879-1890. DOI: 10.37188/OPE.20243212.1879.
HU Wei,LIU Jizhu,LI Tao,et al.Rapid optimization design of closed rectangular hydrostatic air flotation guideway[J].Optics and Precision Engineering,2024,32(12):1879-1890. DOI: 10.37188/OPE.20243212.1879.
针对闭式矩形静压气浮导轨静态性能较差,主流的优化设计方法耗时久的问题,本文快速优化设计了一款闭式矩形静压气浮轴承。首先,采用FLUENT软件搭建了矩形气浮轴承的仿真模型,采用此模型进行仿真计算,分析了不同节流孔分布位置和节流孔个数对矩形气浮轴承的静态性能影响,并确定了最优的节流孔分布位置和节流孔个数。再通过响应面优化设计方法分析拟合了节流器结构参数与气浮轴承的承载力、刚度和耗气量的曲线,结合响应面曲线图快速得到矩形气浮轴承的最优设计参数,缩短了分析时间,优化后的结构参数承载能力和刚度分别提高了11.27%和80%,耗气量降低了15.86%,最终进行了实验验证,实验测试值和仿真值曲线基本拟合一致,表明了该方法在气体静压轴承结构参数设计中的可靠性和准确性。本文对矩形静压轴承的快速设计优化具有重要参考价值。
Aiming at the problem that the static performance of the closed rectangular hydrostatic air-bearing guide is poor and the mainstream optimization design method is time-consuming, this paper quickly optimized the design of a closed rectangular hydrostatic air-bearing. First of all, the simulation model of rectangular air-bearing was constructed by using FLUENT software, and the simulation calculation was carried out by using this model to analyze the effects of different throttle hole distribution positions and the number of throttle holes on the static performance of rectangular air-bearing, and determine the optimal throttle hole distribution position and the number of throttle holes. Then the curves of the throttle structural parameters and the bearing capacity, stiffness and air consumption of the air-bearing were analytically fitted by the response surface optimization design method, and the optimal design parameters of the rectangular air-bearing were quickly obtained by combining with the response surface curve diagram. The results show that the optimized structural parameters of the bearing capacity and stiffness are increased by 11.27% and 80% respectively, and the gas consumption is reduced by 15.86%. Finally, experimental verification is carried out, and the curves of the experimental test values and simulation values are basically fitted consistently, which demonstrates the reliability and accuracy of the method in the design of structural parameters of the gas-static bearing. This paper has important reference value for the rapid design optimization of rectangular hydrostatic bearings.
矩形气浮导轨有限元法响应面快速优化
rectangular air flotation guidebearing capacitystiffnessoptimization
赵淑芝, 刘明. 气体润滑轴承的发展与应用[J]. 机械设计与制造, 1987(1): 45-48.
ZHAO S Z, LIU M. Development and application of gas lubricated bearings[J]. Machinery Design & Manufacture, 1987(1): 45-48.(in Chinese)
WEN Z P, GU H, SHI Z Y. Key technologies and design methods of ultra-precision aerostatic bearings[J]. Lubricants, 2023, 11(8): 315. doi: 10.3390/lubricants11080315http://dx.doi.org/10.3390/lubricants11080315
ZHAO Q, QIANG M C, HOU Y, et al. Research developments of aerostatic thrust bearings: a review[J]. Applied Sciences, 2022, 12(23): 11887. doi: 10.3390/app122311887http://dx.doi.org/10.3390/app122311887
GAO Q, CHEN W Q, LU L, et al. Aerostatic bearings design and analysis with the application to precision engineering: state-of-the-art and future perspectives[J]. Tribology International, 2019, 135: 1-7. doi: 10.1016/j.triboint.2019.02.020http://dx.doi.org/10.1016/j.triboint.2019.02.020
QI L Z, LIU L, GAO Q, et al. Investigation on the influence of structural rigidity on the stiffness of aerostatic guideway considering fluid-structure interaction[J]. Tribology International, 2022, 173: 107658. doi: 10.1016/j.triboint.2022.107658http://dx.doi.org/10.1016/j.triboint.2022.107658
王婷, 张浩, 杨佳成, 等. 均压槽气体静压轴承数值计算与静态性能分析[J]. 润滑与密封, 2021, 46(7): 23-31. doi: 10.3969/j.issn.0254-0150.2021.07.004http://dx.doi.org/10.3969/j.issn.0254-0150.2021.07.004
WANG T, ZHANG H, YANG J C, et al. Numerical calculation and static performance analysis of the aerostatic bearing with equalizing pressure grooves[J]. Lubrication Engineering, 2021, 46(7): 23-31.(in Chinese). doi: 10.3969/j.issn.0254-0150.2021.07.004http://dx.doi.org/10.3969/j.issn.0254-0150.2021.07.004
毛宁宁, 雷中舵, 孙雅洲. 基于CFD的气体静压高推力轴承仿真研究[J]. 计算机仿真, 2020, 37(7): 219-223.
MAO N N, LEI Z D, SUN Y Z. Simulation of gas hydrostatic high thrust bearing based on CFD[J]. Computer Simulation, 2020, 37(7): 219-223.(in Chinese)
邱春雷, 尹洋. 基于响应面法的小孔节流静压气体轴承多目标优化[J]. 润滑与密封, 2022, 47(7): 125-130. doi: 10.3969/j.issn.0254-0150.2022.07.018http://dx.doi.org/10.3969/j.issn.0254-0150.2022.07.018
QIU C L, YIN Y. Multi-objective optimization of aerostatic bearing with orifice based on response surface method[J]. Lubrication Engineering, 2022, 47(7): 125-130.(in Chinese). doi: 10.3969/j.issn.0254-0150.2022.07.018http://dx.doi.org/10.3969/j.issn.0254-0150.2022.07.018
刘通, 董志强. 不同气腔结构径向静压空气轴承性能对比[J]. 润滑与密封, 2023, 48(5): 103-109.
LIU T, DONG Z Q. Performance comparison of radial aerostatic bearings with different air cavity structures[J]. Lubrication Engineering, 2023, 48(5): 103-109.(in Chinese)
岳友飞, 苏星, 李自胜, 等. 基于气浮轴承的无摩擦气缸设计及参数优化[J]. 光学 精密工程, 2022, 30(6): 678-688. doi: 10.37188/ope.20223006.0678http://dx.doi.org/10.37188/ope.20223006.0678
YUE Y F, SU X, LI Z S, et al. Design and parameter optimization of frictionless cylinder based on aerostatic bearing[J]. Opt. Precision Eng., 2022, 30(6): 678-688.(in Chinese). doi: 10.37188/ope.20223006.0678http://dx.doi.org/10.37188/ope.20223006.0678
王昆, 龚俭龙, 曹斌, 等. 矩形闭式静压气浮导轨结构设计计算与仿真分析[J]. 新技术新工艺, 2014(5): 35-38. doi: 10.3969/j.issn.1003-5311.2014.05.013http://dx.doi.org/10.3969/j.issn.1003-5311.2014.05.013
WANG K, GONG J L, CAO B, et al. Rectangular closed aerostatic guideways structure design calculations and simulation analysis[J]. New Technology & New Process, 2014(5): 35-38.(in Chinese). doi: 10.3969/j.issn.1003-5311.2014.05.013http://dx.doi.org/10.3969/j.issn.1003-5311.2014.05.013
王云飞. 气体润滑理论与气体轴承设计[M]. 北京: 机械工业出版社, 1999. doi: 10.1007/978-1-4612-1518-9_5http://dx.doi.org/10.1007/978-1-4612-1518-9_5
WANG Y F. Gas Lubricated Theory and Design Manual of Gas Bearings[M]. Beijing: China Machine Press, 1999.(in Chinese). doi: 10.1007/978-1-4612-1518-9_5http://dx.doi.org/10.1007/978-1-4612-1518-9_5
陈作炳, 唐仁洪, 梅文辉, 等. 带气腔结构的平面静压气体轴承特性分析[J]. 机械设计, 2022, 39(1): 59-64.
CHEN Z B, TANG R H, MEI W H, et al. Analysis on the characteristics of plane-and-static pressure gas bearings with air cavity structure[J]. Journal of Machine Design, 2022, 39(1): 59-64.(in Chinese)
李志远, 裴帮, 李学飞, 等. 基于响应面法的减速器行星架多目标优化研究[J]. 机电工程, 2022, 39(1): 26-31, 39.
LI Z Y, PEI B, LI X F, et al. Multi-objective optimization of reducer planet carrier based on response surface method[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(1): 26-31, 39.(in Chinese)
王勇, 陈娇娇, 张鹏, 等. 基于响应面-遗传算法的不锈钢激光切割工艺参数优化与试验研究[J]. 应用激光, 2023, 43(11): 85-94.
WANG Y, CHEN J J, ZHANG P, et al. Process parameter optimization and experimental research on stainless steel laser cutting based on response surface-genetic method[J]. Applied Laser, 2023, 43(11): 85-94.(in Chinese)
隋允康, 宇慧平. 响应面方法的改进及其对工程优化的应用[M]. 北京: 科学出版社, 2011.
SUI Y K, YU H P. Improvement of Response Surface Method and its Application to Engineering Optimization[M]. Beijing: Science Press, 2011.(in Chinese)
陶晓倩, 张强, 付慧敏, 等. 基于Box-Behnken响应面法优化紫苏叶挥发油提取工艺的研究[J]. 中南药学, 2023, 21(2): 369-374.
TAO X Q, ZHANG Q, FU H M, et al. Optimization of extraction of volatile oil from perillae folium based on Box-Behnken response surface methodology[J]. Central South Pharmacy, 2023, 21(2): 369-374.(in Chinese)
0
Views
106
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution