浏览全部资源
扫码关注微信
1.三峡大学 水电工程智能视觉监测湖北省重点实验室,湖北 宜昌 443002
2.三峡大学 计算机与信息学院,湖北 宜昌 443002
Published:25 June 2024,
Received:05 March 2024,
Revised:19 April 2024,
移动端阅览
夏平,李子怡,雷帮军等.小波DehazeFormer网络的道路交通图像去雾[J].光学精密工程,2024,32(12):1915-1928.
XIA Ping,LI Ziyi,LEI Bangjun,et al.Wavelet dehazeformer network for road traffic image dehazing method[J].Optics and Precision Engineering,2024,32(12):1915-1928.
夏平,李子怡,雷帮军等.小波DehazeFormer网络的道路交通图像去雾[J].光学精密工程,2024,32(12):1915-1928. DOI: 10.37188/OPE.20243212.1915.
XIA Ping,LI Ziyi,LEI Bangjun,et al.Wavelet dehazeformer network for road traffic image dehazing method[J].Optics and Precision Engineering,2024,32(12):1915-1928. DOI: 10.37188/OPE.20243212.1915.
针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法。为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selective kernel feature fusion,SKFF)级联作为骨干网络的基本单元,编码部分由三级这样的基本单元构成,以融合图像的原始信息和去雾后的信息,更好地捕获雾图中关键特征;中间特征层采用局部残差结构,并加入卷积注意力机制(Convolutional Block Attention Module,CBAM),对不同级别的特征赋予不同权重,同时融入内容引导注意力混合方案(Content-guided Attention based Mixup Fusion Scheme,CGAFusion),通过学习空间权重来调整特征;解码部分由DehazeFormer和SKFF构成,采用逐点卷积,在保证网络性能同时,减少网络的参数量;跳跃连接引入小波变换,对不同尺度的特征图进行小波分析,获取不同尺度的高、低频特征,放大交通雾图的细节使得复原图像保留纹理;最后,将原始图像和经解码后输出的特征图融合,获取更多的细节信息。实验结果表明,本文方法相比于基线DehazeFormer网络,其PSNR指标在公开数据集中提升1.32以上,在合成数据集中提升0.56,SSIM指标提升了0.015以上,MSE值有较大幅度降低,下降了23.15以上;Entropy指标提升0.06以上。本文去雾算法对提升交通雾图像的对比度、降低雾图模糊和失真及细节丢失等方面均表现出优良的性能,有助于后续道路交通的智能视觉监控与管理。
Aiming at challenges such as low contrast, detail loss, blurring, and distortion in foggy images of traffic roads, a road traffic image dehazing method was proposed based on Wavelet DehazeFormer model.To enhance dehazing capability of the model,a Wavelet DehazeFormer network with an encoder-decoder structure was constructed. The encoder employed the DehazeFormer and the Selective Kernel Feature Fusion module (SKFF) as basic units in a cascaded manner. The encoding section consisted of three levels of such basic units to fuse the original information and post-dehazing information, capturing critical features more effectively. The middle feature layer adopted a local residual structure, incorporating the Convolutional Block Attention Module (CBAM) for different weights assigned to features of different levels. Additionally, a Content-guided Attention based Mixup Fusion Scheme (CGAFusion) was introduced to adjust features by learning spatial weights. The decoder comprised DehazeFormer and SKFF, utilizing pointwise convolution to reduce parameter count while maintaining network performance. Jump connections introduced wavelet transform to analyze feature maps of different scales, obtaining high and low-frequency features at various resolutions. This helped amplify details of the traffic fog image for enhanced texture retention in the dehazed image. Finally, the original image and the decoded output feature map were fused to gather more detailed information.Experimental results demonstrate that, in comparison with the baseline DehazeFormer network, the proposed method achieves a PSNR improvement of over 1.32 on public datasets and 0.56 on synthetic datasets. The SSIM metric is increased by 0.015 or more, and there is a substantial reduction in MSE, with a decrease of 23.15 or more. The entropy metric shows an increase of 0.06 or more. The proposed dehazing algorithm exhibits excellent performance in enhancing contrast, reducing fog-induced blurring and distortion, which preserves details in traffic fog images.This contributes to the advancement of intelligent visual surveillance and management in road traffic.
交通图像去雾小波变换选择性核特征融合内容引导注意力DehazeFormer
traffic image dehazingwavelet transformselective kernel feature fusioncontent-guided attentionDehazeFormer
CHEN Y H, LI W, SAKARIDIS C, et al. Domain adaptive faster r-cnn for object detection in the wild[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 3339-3348. doi: 10.1109/cvpr.2018.00352http://dx.doi.org/10.1109/cvpr.2018.00352
CHOI D Y, CHOI J H, CHOI J, et al. Sharpness enhancement and super-resolution of around-view monitor images[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2650-2662. doi: 10.1109/tits.2017.2762406http://dx.doi.org/10.1109/tits.2017.2762406
STARK J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-896. doi: 10.1109/83.841534http://dx.doi.org/10.1109/83.841534
YANG W T, WANG R G, FANG S, et al. Variable filter retinex algorithm for foggy image enhancement[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(6): 965-971. doi: 10.3724/sp.j.1089.2010.10848http://dx.doi.org/10.3724/sp.j.1089.2010.10848
SARKAR M, SARKAR P R, MONDAL U, et al. Empirical wavelet transform-based fog removal via dark channel prior[J]. IET Image Processing, 2020, 14(6): 1170-1179. doi: 10.1049/iet-ipr.2019.0496http://dx.doi.org/10.1049/iet-ipr.2019.0496
BANERJEE S, SINHA CHAUDHURI S. Nighttime image-dehazing: a review and quantitative benchmarking[J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2943-2975. doi: 10.1007/s11831-020-09485-3http://dx.doi.org/10.1007/s11831-020-09485-3
FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1-9. doi: 10.1145/1360612.1360671http://dx.doi.org/10.1145/1360612.1360671
MENG G F, WANG Y, DUAN J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia. IEEE, 2013: 617-624. doi: 10.1109/iccv.2013.82http://dx.doi.org/10.1109/iccv.2013.82
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL. IEEE, 2009: 1956-1963. doi: 10.1109/cvpr.2009.5206515http://dx.doi.org/10.1109/cvpr.2009.5206515
WANG Y, YIN Y K, YANG X L, et al. Polarimetric dehazing based on fusing intensity and degree of polarization[J]. Optics Laser Technology, 2022, 156: 108584. doi: 10.1016/j.optlastec.2022.108584http://dx.doi.org/10.1016/j.optlastec.2022.108584
LIANG Z, DING X Y, MI Z T, et al. Effective polarization-based image dehazing with regularization constraint[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 8001405.
LAHA S, SHARMA A, HU S N, et al. Near-Infrared depth-independent image dehazing using haar wavelets[C]. 2020 25th International Conference on Pattern Recognition (ICPR). Milan, Italy. IEEE, 2021: 5384-5390. doi: 10.1109/icpr48806.2021.9412589http://dx.doi.org/10.1109/icpr48806.2021.9412589
YU M, CUI T, LU H Y, et al. VIFNet: an End-to-end Visible-infrared Fusion Network for Image Dehazing[EB/OL]. 2024: arXiv: 2404.07790. http://arxiv.org/abs/2404.07790http://arxiv.org/abs/2404.07790. doi: 10.1016/j.neucom.2024.128105http://dx.doi.org/10.1016/j.neucom.2024.128105
SHARMA N, KUMAR V, SINGLA S K. Single image defogging using deep learning techniques: past, present and future[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4449-4469. doi: 10.1007/s11831-021-09541-6http://dx.doi.org/10.1007/s11831-021-09541-6
YANG H H, FU Y W. Wavelet U-net and the chromatic adaptation transform for single image dehazing[C]. 2019 IEEE International Conference on Image Processing (ICIP). Taipei, China. IEEE, 2019: 2736-2740. doi: 10.1109/icip.2019.8803391http://dx.doi.org/10.1109/icip.2019.8803391
LI B Y, REN W Q, FU D P, et al. Benchmarking single image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018: 492-505. doi: 10.1109/tip.2018.2867951http://dx.doi.org/10.1109/tip.2018.2867951
SONG Y D, HE Z Q, QIAN H, et al. Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32: 1927-1941. doi: 10.1109/tip.2023.3256763http://dx.doi.org/10.1109/tip.2023.3256763
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional Networks for Biomedical Image Segmentation[M]. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. doi: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28
GUI J, CONG X F, HE L, et al. Illumination Controllable Dehazing Network based on Unsupervised Retinex Embedding[EB/OL]. 2023: arXiv: 2306.05675. http://arxiv.org/abs/2306.05675http://arxiv.org/abs/2306.05675. doi: 10.1109/tmm.2023.3326881http://dx.doi.org/10.1109/tmm.2023.3326881
QIN X, WANG Z L, BAI Y C, et al. FFA-net: feature fusion attention network for single image dehazing[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11908-11915. doi: 10.1609/aaai.v34i07.6865http://dx.doi.org/10.1609/aaai.v34i07.6865
CHEN Z X, HE Z W, LU Z M. DEA-Net: Single Image Dehazing Based on Detail-enhanced Convolution and Content-Guided Attention[EB/OL]. 2023: arXiv: 2301.04805. http://arxiv.org/abs/2301.04805http://arxiv.org/abs/2301.04805. doi: 10.1109/tip.2024.3354108http://dx.doi.org/10.1109/tip.2024.3354108
ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[C]. European Conference on Computer Vision. Cham: Springer, 2020: 492-511. doi: 10.1007/978-3-030-58595-2_30http://dx.doi.org/10.1007/978-3-030-58595-2_30
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. European Conference on Computer Vision. Cham: Springer, 2018: 3-19. doi: 10.1007/978-3-030-01234-2_1http://dx.doi.org/10.1007/978-3-030-01234-2_1
SIFRE L, MALLAT S. Rigid-motion Scattering for Texture Classification[EB/OL]. 2014: arXiv: 1403.1687. http://arxiv.org/abs/1403.1687http://arxiv.org/abs/1403.1687. doi: 10.1109/cvpr.2013.163http://dx.doi.org/10.1109/cvpr.2013.163
SAKARIDIS C, DAI D X, VAN GOOL L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126(9): 973-992. doi: 10.1007/s11263-018-1072-8http://dx.doi.org/10.1007/s11263-018-1072-8
XIAO B X, ZHENG Z R, ZHUANG Y L, et al. Single UHD image dehazing via Interpretable Pyramid Network[J]. Signal Processing, 2024, 214: 109225. doi: 10.1016/j.sigpro.2023.109225http://dx.doi.org/10.1016/j.sigpro.2023.109225
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. doi: 10.1177/0278364913491297http://dx.doi.org/10.1177/0278364913491297
GODARD C, AODHA OMAC, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2019: 3827-3837. doi: 10.1109/iccv.2019.00393http://dx.doi.org/10.1109/iccv.2019.00393
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/tip.2003.819861http://dx.doi.org/10.1109/tip.2003.819861
LI B Y, PENG X L, WANG Z Y, et al. AOD-net: all-in-one dehazing network[C]. 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 4780-4788. doi: 10.1109/iccv.2017.511http://dx.doi.org/10.1109/iccv.2017.511
QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced Pix2pix dehazing network[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 8152-8160. doi: 10.1109/cvpr.2019.00835http://dx.doi.org/10.1109/cvpr.2019.00835
0
Views
14
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution