浏览全部资源
扫码关注微信
1.中国科学院 红外探测与成像技术重点实验室,上海 200083
2.中国科学院 上海技术物理研究所,上海 200083
3.中国科学院大学,北京 100049
Received:15 October 2021,
Revised:17 November 2021,
移动端阅览
穆靖,李伟华,饶俊民等.采用三层模板局部差异度量的红外弱小目标检测[J].光学精密工程,
MU Jing,LI Weihua,RAO Junmin,et al.Infrared small target detection using tri-layer template local difference measure[J].Optics and Precision Engineering,
穆靖,李伟华,饶俊民等.采用三层模板局部差异度量的红外弱小目标检测[J].光学精密工程, DOI:10.37188/OPE.XXXX.0001
MU Jing,LI Weihua,RAO Junmin,et al.Infrared small target detection using tri-layer template local difference measure[J].Optics and Precision Engineering, DOI:10.37188/OPE.XXXX.0001
针对现有算法在复杂背景下虚警率高、实时性差的缺陷,提出了一种基于三层模板局部差异度量的单帧红外弱小目标检测算法。首先,提出三层模板的构造方式;然后充分利用模板不同层之间灰度分布的差异,提出灰度差异度量和方差差异度量相结合的三层模板局部差异度量算法,同时实现了目标增强与背景抑制;最后采用自适应阈值分割算法从显著性图中提取待检测目标。实验结果表明,所提算法只需使用固定尺寸的三层模板遍历一次图像即可实现对不同大小目标的检测,不仅避免了由多尺度运算导致的算法复杂度的提升,而且进一步防止了由区域交叠造成的目标漏检。使用公开数据集SIRST进行测试,与现有8种算法对比,本文算法的信杂比增益平均提高了7.7倍,背景抑制因子平均提高了3.9倍,且具有更好的实时性。
Due to the defects of existing algorithms with high false alarm rate and poor real-time performance in complex backgrounds, we propose a single-frame infrared small target detection algorithm based on the tri-layer template local difference measure. First, the construction of a tri-layer template is proposed. Then, by making full use of the disparity in grayscale distribution between different layers, a tri-layer template local difference measure combining the grayscale difference measure and grayscale variance measure is proposed, which achieves target enhancement and background suppression simultaneously. Finally, an adaptive threshold segmentation method is applied to extract the targets from the saliency map. The experimental result shows that the proposed algorithm only needs to traverse the image by a fixed-scale tri-layer template to achieve the detection of targets with different sizes, which not only avoids the increase of complexity caused by multi-scale operation but also prevents the miss detection caused by regional overlap. We compare eight methods on public dataset SIRST. The experimental result shows that the signal to clutter gain and background suppression factor of the proposed algorithm are improved 7.7 times and 3.9 times on average respectively. Besides, the proposed algorithm achieves better real-time performance.
DENG H , SUN X P , LIU M L , et al . Infrared small-target detection using multiscale gray difference weighted image entropy [J]. IEEE Transactions on Aerospace and Electronic Systems , 2016 , 52 ( 1 ): 60 - 72 . doi: 10.1109/taes.2015.140878 http://dx.doi.org/10.1109/taes.2015.140878
GAO C Q , MENG D Y , YANG Y , et al . Infrared patch-image model for small target detection in a single image [J]. IEEE Transactions on Image Processing , 2013 , 22 ( 12 ): 4996 - 5009 . doi: 10.1109/tip.2013.2281420 http://dx.doi.org/10.1109/tip.2013.2281420
谷雨 , 刘俊 , 沈宏海 , 等 . 基于改进多尺度分形特征的红外图像弱小目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 6 ): 1375 - 1386 . doi: 10.3788/ope.20202806.1375 http://dx.doi.org/10.3788/ope.20202806.1375
GU Y , LIU J , SHEN H H , et al . Infrared dim-small target detection based on an improved multiscale fractal feature [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1375 - 1386 . (in Chinese) . doi: 10.3788/ope.20202806.1375 http://dx.doi.org/10.3788/ope.20202806.1375
CHEN Y Y , HAN J H , ZHANG H H , et al .. Infrared small dim target detection using local contrast measure weighted by reversed local diversity [J]. Infrared Laser Engineering , 2021 , 50 ( 8 ): 151 - 167 . doi: 10.1016/j.ijleo.2021.167651 http://dx.doi.org/10.1016/j.ijleo.2021.167651
刘晓 , 崔光照 , 李正周 , 等 . 基于视觉系统分层的小目标运动检测 [J]. 光学 精密工程 , 2019 , 27 ( 10 ): 2251 - 2262 . doi: 10.3788/ope.20192710.2251 http://dx.doi.org/10.3788/ope.20192710.2251
LIU X , CUI G ZH , LI ZH ZH , et al . Small target motion detection based on layering of vision system [J]. Opt. Precision Eng. , 2019 , 27 ( 10 ): 2251 - 2262 . (in Chinese) . doi: 10.3788/ope.20192710.2251 http://dx.doi.org/10.3788/ope.20192710.2251
LIU D P , CAO L , LI Z Z , et al . Infrared small target detection based on flux density and direction diversity in gradient vector field [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2018 , 11 ( 7 ): 2528 - 2554 . doi: 10.1109/jstars.2018.2828317 http://dx.doi.org/10.1109/jstars.2018.2828317
ZHANG K , NI S Y , YAN D S , et al . Review of dim small target detection algorithms in single-frame infrared images [C]. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 1820,2021 , Chongqing, China. IEEE , 2021 : 2115 - 2120 . doi: 10.1109/imcec51613.2021.9482137 http://dx.doi.org/10.1109/imcec51613.2021.9482137
ZENG M , LI J X , PENG Z . The design of Top-Hat morphological filter and application to infrared target detection [J]. Infrared Physics & Technology , 2006 , 48 ( 1 ): 67 - 76 . doi: 10.1016/j.infrared.2005.04.006 http://dx.doi.org/10.1016/j.infrared.2005.04.006
BAI X Z , ZHOU F G . Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition , 2010 , 43 ( 6 ): 2145 - 2156 . doi: 10.1016/j.patcog.2009.12.023 http://dx.doi.org/10.1016/j.patcog.2009.12.023
DESHPANDE S D , ER M H , VENKATESWARLU R , et al . Max-mean and max-Median filters for detection of small targets [C]. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 3809 , Signal and Data Processing of Small Targets 1999, Denver , CO , USA . 1999, 3809 : 74 - 83 .
WANG X , LV G , XU L Z . Infrared dim target detection based on visual attention [J]. Infrared Physics & Technology , 2012 , 55 ( 6 ): 513 - 521 . doi: 10.1016/j.infrared.2012.08.004 http://dx.doi.org/10.1016/j.infrared.2012.08.004
CHEN C L P , LI H , WEI Y T , et al . A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014 , 52 ( 1 ): 574 - 581 . doi: 10.1109/tgrs.2013.2242477 http://dx.doi.org/10.1109/tgrs.2013.2242477
HAN J H , MA Y , ZHOU B , et al . A robust infrared small target detection algorithm based on human visual system [J]. IEEE Geoscience and Remote Sensing Letters , 2014 , 11 ( 12 ): 2168 - 2172 . doi: 10.1109/lgrs.2014.2323236 http://dx.doi.org/10.1109/lgrs.2014.2323236
WEI Y T , YOU X G , LI H . Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition , 2016 , 58 : 216 - 226 . doi: 10.1016/j.patcog.2016.04.002 http://dx.doi.org/10.1016/j.patcog.2016.04.002
HAN J H , LIANG K , ZHOU B , et al . Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters , 2018 , 15 ( 4 ): 612 - 616 . doi: 10.1109/lgrs.2018.2790909 http://dx.doi.org/10.1109/lgrs.2018.2790909
WU L , MA Y , FAN F , et al . A double-neighborhood gradient method for infrared small target detection [J]. IEEE Geoscience and Remote Sensing Letters , 2021 , 18 ( 8 ): 1476 - 1480 . doi: 10.1109/lgrs.2020.3003267 http://dx.doi.org/10.1109/lgrs.2020.3003267
潘胜达 , 张素 , 赵明 , 等 . 基于双层局部对比度的红外弱小目标检测方法 [J]. 光子学报 , 2020 , 49 ( 1 ): 184 - 192 . doi: 10.3788/gzxb20204901.0110003 http://dx.doi.org/10.3788/gzxb20204901.0110003
PAN SH D , ZHANG S , ZHAO M , et al . Infrared small target detection based on double-layer local contrast measure [J]. Acta Photonica Sinica , 2020 , 49 ( 1 ): 184 - 192 . (in Chinese) . doi: 10.3788/gzxb20204901.0110003 http://dx.doi.org/10.3788/gzxb20204901.0110003
DAI Y M , WU Y Q . Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2017 , 10 ( 8 ): 3752 - 3767 . doi: 10.1109/jstars.2017.2700023 http://dx.doi.org/10.1109/jstars.2017.2700023
JIANG B T , MA X F , LU Y , et al . Ship detection in spaceborne infrared images based on Convolutional Neural Networks and synthetic targets [J]. Infrared Physics & Technology , 2019 , 97 : 229 - 234 . doi: 10.1016/j.infrared.2018.12.040 http://dx.doi.org/10.1016/j.infrared.2018.12.040
RONNEBERGER O , FISCHER P , BROX T . U-net : convolutional networks for biomedical image segmentation [M]. Lecture Notes in Computer Science . Cham : Springer International Publishing , 2015 : 234 - 241 . doi: 10.1007/978-3-319-24574-4_28 http://dx.doi.org/10.1007/978-3-319-24574-4_28
WANG K D , LI S Y , NIU S S , et al . Detection of infrared small targets using feature fusion convolutional network [J]. IEEE Access , 2019 , 7 : 146081 - 146092 . doi: 10.1109/access.2019.2944661 http://dx.doi.org/10.1109/access.2019.2944661
鞠默然 , 罗海波 , 刘广琦 , 等 . 采用空间注意力机制的红外弱小目标检测网络 [J]. 光学 精密工程 , 2021 , 29 ( 4 ): 843 - 853 . doi: 10.37188/OPE.20212904.0843 http://dx.doi.org/10.37188/OPE.20212904.0843
JU M R , LUO H B , LIU G Q , et al . Infrared dim and small target detection network based on spatial attention mechanism [J]. Opt. Precision Eng. , 2021 , 29 ( 4 ): 843 - 853 . (in Chinese) . doi: 10.37188/OPE.20212904.0843 http://dx.doi.org/10.37188/OPE.20212904.0843
MORADI S , MOALLEM P , SABAHI M F . Scale-space point spread function based framework to boost infrared target detection algorithms [J]. Infrared Physics & Technology , 2016 , 77 : 27 - 34 . doi: 10.1016/j.infrared.2016.05.007 http://dx.doi.org/10.1016/j.infrared.2016.05.007
DAI Y M , WU Y Q , ZHOU F , et al . Asymmetric contextual modulation for infrared small target detection [C]. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). 38,2021 , Waikoloa, HI, USA. IEEE , 2021 : 949 - 958 . doi: 10.1109/wacv48630.2021.00099 http://dx.doi.org/10.1109/wacv48630.2021.00099
HAN J H , MORADI S , FARAMARZI I , et al . A local contrast method for infrared small-target detection utilizing a tri-layer window [J]. IEEE Geoscience and Remote Sensing Letters , 2020 , 17 ( 10 ): 1822 - 1826 . doi: 10.1109/lgrs.2019.2954578 http://dx.doi.org/10.1109/lgrs.2019.2954578
韩金辉 , 董兴浩 , 蒋亚伟 , 等 . 基于局部对比度机制的红外弱小目标检测算法 [J]. 红外技术 , 2021 , 43 ( 4 ): 357 - 366 .
HAN J H , DONG X H , JIANG Y W , et al . Infrared small dim target detection based on local contrast mechanism [J]. Infrared Technology , 2021 , 43 ( 4 ): 357 - 366 . (in Chinese)
FAWCETT T . An introduction to ROC analysis [J]. Pattern Recognition Letters , 2006 , 27 ( 8 ): 861 - 874 . doi: 10.1016/j.patrec.2005.10.010 http://dx.doi.org/10.1016/j.patrec.2005.10.010
QIN Y , BRUZZONE L , GAO C Q , et al . Infrared small target detection based on facet kernel and random walker [J]. IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 9 ): 7104 - 7118 . doi: 10.1109/tgrs.2019.2911513 http://dx.doi.org/10.1109/tgrs.2019.2911513
XIA C Q , LI X R , ZHAO L Y , et al . Infrared small target detection based on multiscale local contrast measure using local energy factor [J]. IEEE Geoscience and Remote Sensing Letters , 2020 , 17 ( 1 ): 157 - 161 . doi: 10.1109/lgrs.2019.2914432 http://dx.doi.org/10.1109/lgrs.2019.2914432
0
Views
536
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution