TANG Yong-he, LU Huan-zhang. Fast local feature description algorithm based on greyvalue differential invariants[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 447-454
TANG Yong-he, LU Huan-zhang. Fast local feature description algorithm based on greyvalue differential invariants[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 447-454 DOI: 10.3788/OPE.20122002.0447.
Fast local feature description algorithm based on greyvalue differential invariants
A fast local feature description algorithm based on the region histogram of Greyvalue Differential Invariants(GDIs) is presented to improve the traditional GDI feature descriptor with complex computation
worse stability and less information. The GDIs with the meaning of differential geometry derived from low order derivatives are used to describe a feature point to reduce the computation complexity of the feature descriptor and enhance the stability. The intensity and relative location of the feature point neighborhood are made full use of to increase the content of information and improve the robustness of the feature descriptor. Finally
the feature description is used to match images.The experiment results demonstrate that the proposed algorithm can get better matching results in the cases of image zoom
rotation
blurring
illumination varying
smaller viewpoint changes as well as JPEG compression. Furthermore
the processing speed is about twice that of the Scale Invariable Feature Transform(SIFT).
关键词
Keywords
references
丁雪梅, 王维雅, 黄向东. 基于差分和特征不变量的运动目标检测与跟踪[J]. 光学 精密工程,2007, 15(4):570-576. DING X M, WANG W Y, HUANG X D. New method for detecting and tracking of moving target based on difference and invariant[J]. Opt. Precision Eng., 2007, 15(4):570-576. (in Chinese).[2] 王会峰, 刘上乾,汪大宝,等. 基于序列图像特征配准的摄像机补偿算法[J]. 光学 精密工程, 2008, 16(7):1330-1334. WANG H F, LIU SH Q, WANG D B, et al.. Video camera rotation compensation algorithm based on feature matching of sequences image frames[J]. Opt. Precision Eng., 2008,16(7):1330-1334. (in Chinese)[3] LEE L, KO H. Gradient-based local affine invariant feature extraction for mobile robot localization in indoor environments[J]. Pattern Recognition Letters, 2008, 29(14):1934-1940.[4] 杨晓敏, 吴炜, 卿粼波,等. 图像特征点提取及匹配技术[J]. 光学 精密工程, 2009, 17(9):2276-2282. YANG X M, WU W, QING L B, et al.. Image feature extraction and matching technology[J]. Opt. Precision Eng., 2009, 17(9):2276-2282. (in Chinese).[5] YANG D D, ANDRZEJ S. A low-dimensional local descriptor incorporating TPS warping for image matching[J]. Image and Vision Computing, 2010, 28:1184-1195.[6] DONGJOE S, TARDI T. Clique descriptor of affine invariant regions for robust wide baseline image matching[J]. Pattern Recognition, 2010,43:3261-3272.[7] LORIS N, ALESSANDRA L, SHERYL B. Local binary patterns variants as texture descriptors for medical image analysis[J]. Artificial Intelligence in Medicine, 2010, 49:117-125.[8] LOWE D G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.[9] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005,27(10):1615-1630.[10] BAY H, TUYTELAARS T, GOOL L V. SURF:Speeded up robust features . Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 2006:404-417.[11] WU F C,WANG Z H, WANG X G. Feature vector field and feature matching[J]. Pattern Recognition, 2010,43:3273-3281. [12] 王旭光, 王志衡, 吴福朝. Harris相关与特征匹配[J]. 模式识别与人工智能, 2009, 22(4):505-513. WANG X G, WANG Z H, WU F C. Harris correlation and feature matching[J]. PR &AI, 2009, 22(4): 505-513. (in Chinese)[13] SCHMI C, MOHR R. Matching by local invariants .Technical Report INRIA, France, 1995.