NIAN Yong-jian, XIN Qin, TANG Yi, WAN Jian-wei. Distributed lossless compression of hyperspectral images based on multi-band prediction[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 906-912
NIAN Yong-jian, XIN Qin, TANG Yi, WAN Jian-wei. Distributed lossless compression of hyperspectral images based on multi-band prediction[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 906-912 DOI: 10.3788/OPE.20122004.0906.
Distributed lossless compression of hyperspectral images based on multi-band prediction
A lossless compression algorithm based on distributed source coding was proposed to compress the airborne hyperspectral data effectively. In order to make full use of the spectral correlation of hyperspectral images
a multi-band prediction scheme was introduced to acquire the prediction values of the current block and to reduce the maximal absolute value of prediction error effectively. Then
by using the maximal absolute value to determine the coset index of pixels belonging to the current block
the lossless compression of hyperspectral images was realized by transmitting the coset index of the current block instead of its prediction error. Experimental results on hyperspectral images acquired by Airborne Visible Infrared Imaging Spectrometer (AVIRIS) show that the proposed algorithm can offer both high compression performance and low encoder complexity compared with those existing classical algorithms
which is available for on-board compression of hyperspectral images.
关键词
Keywords
references
MAGLI E. Multiband lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1168-1178.[2] HUO C F, ZHANG R, PENG T X. Lossless compression of hyperspectral images based on searching optimal multibands for prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2009,6(2):339-343.[3] LIN C C,WANG Y T. An efficient lossless compression scheme for hyperspectral images using two-stage prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(3):558-562.[4] ZHANG J, LIU G Z. An efficient reordering prediction-based lossless compression algorithm for hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2007,4(2):283-287.[5] 高恒振,万建伟,粘永健,等. 组合核函数支持向量机高光谱图像融合分类[J]. 光学 精密工程,2011,19(4):878-883. GAO H ZH, WAN J W, NIAN Y J, et al.. Fusion classification of hyperspectral image by composite kernels support vector machine[J]. Opt. Precision Eng., 2011,19(4):878-883. (in Chinese)[6] MIELIKAINEN J, TOIVANEN P. Clustered DPCM for the lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12):2943-2946.[7] ABRARDO A, BARNI M, MAGLI E, et al.. Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(4):1892-1904.[8] 宋娟,吴成柯,张静,等. 基于分类和陪集码的高光谱图像无损压缩[J]. 电子与信息学报,2011,33(1):231-234. SONG J, WU CH K, ZHANG J. Lossless compression of hyperspectral images based on classification and coset coding[J]. Journal of Electronics&Information Technology, 2011,33(1):231-234. (in Chinese)[9] SLEPIAN D, WOLF J K. Noiseless coding of correlated information sources[J]. IEEE Transactions on Information Theory, 1973,19(4):471-480.[10] MAGLI E, BARNI M, ABRARDO A, et al.. Distributed source coding techniques for lossless compression of hyperspectral images[J]. EURASIP Journal on Advanced Signal Processing, 2007, 2007(1):1-13.[11] ROGER R, CAVENOR C. Lossless compression of AVIRIS images[J]. IEEE Transaction on Image Processing, 1996,5(5):713-719.[12] RIZZO F, CARPENTIERI B, MOTTA G, et al.. Low-complexity lossless compression of hyperspectral imagery via linear prediction[J]. IEEE Signal Processing Letter, 2005,12(2):138-141.[13] WU X L, MEMON N. Context-based lossless interband compression extending CALIC[J]. IEEE Transaction on Image Processing, 2000,9(6):994-1001. [14] RIZZO F, CARPENTIERI B. High performance compression of hyperspectral imagery width reduced search complexity in the compressed domain. Proceedings Data Compression Conference, 2004:479-488.