LAI Zhi-lin, LIU Xiang-dong, GENG Jie. Hammerstein-based model of piezoceramic actuator and its identification[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2087-2094
LAI Zhi-lin, LIU Xiang-dong, GENG Jie. Hammerstein-based model of piezoceramic actuator and its identification[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2087-2094 DOI: 10.3788/OPE.20122009.2087.
Hammerstein-based model of piezoceramic actuator and its identification
For the effect of hysteretic linearity of a piezoceramic actuator on nano-positioning system
a modeling method based on Hammerstein model was proposed. The Hammerstein-based model for the piezoceramic actuator was established and its frequency dependence was described.By using the Hammerstein model
the piezoceramic actuator was taken as a static hysteretic model couple with a dyamic second-order system
and the former was described by the Preisach model and the latter was identified by the genetic algorithm. The experimental results show that the frequency dependence of the Hammerstein-based model is improved after adding the second order system
correspondingly
the error is decreased greatly. In 800 Hz
the absolute average tracking error of the Hammerstein-based model is 0.339 2 m
which is less than that of the Preisach model in 0.888 1 m.
关键词
Keywords
references
VASILJEV P, MAZEIKA D, KULVIETIS G. Modelling and analysis of omni-directional piezoelectric actuator [J]. Journal of Sound and Vibration, 2007, 308: 867-878.[2] 张栋, 张承进, 魏强. 压电微动工作台的动态迟滞模型[J]. 光学 精密工程, 2009,17(3): 551-556. ZHANG D, ZHANG CH J, WEI Q. Dynamic hysteresis model of piezopositioning stage[J]. Opt. Precision Eng., 2009,17(3):551-556.(in Chinese)[3] LEE S H, ROYSTON, FRIEDMAN G. Modeling and compensation of hysteresis in piezoceramic transducers for vibration control[J]. Journal of Intelligent Material Systems and Structures, 2000,11(10): 781-790.[4] JILES D C, ATHERTON D L. Ferromagnetic hysteresis[J]. IEEE Transactions Magnetics, 1983,19(5): 2183-2185.[5] HODGDON M L. Applications of a theory of ferromagnetic hysteresis[J]. IEEE Transactions Magnetics, 1988, 24(1): 218-222.[6] WANG X H, SUN T. Preisach modeling of hysteresis for fast tool servo system [J]. Opt. Precision Eng., 2009, 17(6): 1421-1425.[7] 王岳宇,赵学增. 补偿压电陶瓷迟滞与蠕变的逆控制算法[J]. 光学 精密工程, 2006, 14(6):1032-1040. WANG Y Y, ZHAO X Z. Inverse control algorithm to compensate the hysteresis and creep effect of piezoceramic[J]. Opt. Precision Eng., 2006, 14(6): 1032-1040. (in Chinese)[8] SCHIFFER A, IVANYI A. Preisach distribution function approximation with wavelet interpolation technique[J]. Physica B, 2006,372(1):101-105.[9] BOBBIO S, MILANO G, SERPICO C, et al.. Models of magnetic hysteresis based on play and stop hysterons[J]. IEEE Transactions on Magnetics, 1997,33(6): 4417-4426.[10] 陈辉,谭永红,周杏鹏,等. 压电陶瓷执行器的动态模型辨识与控制[J]. 光学精密工程, 2012, 20(1): 88-95. CHEN H,TAN Y H,ZHOU X P,et al.. Identification and control of dynamic modeling for piezoceramic[J]. Opt. Precision Eng., 2012, 20(1): 88-95. (in Chinese)[11] JIA-TZER H, KHAI D T. A Hammerstein-based dynamic model for hysteresis phenomenon[J]. IEEE Transactions on Power Electronics, 1997, 12(3): 406-413.[12] MAYERGOYZ I D. Mathematical Model of Hysteresis[M]. NewYork:Springer,1991.[13] 李黎, 刘向东, 侯朝桢. 压电陶瓷执行器Preisach 模型的分类排序实现[J]. 压电与声光, 2007, 29(5):544-547. LI L, LIU X D, HOU C ZH. The sorting &taxis realization of Preisach model on piezoelectric ceramic actuator[J]. Piezoel Ectectrics & Acoustooptics, 2007, 29(5): 544-547. (in Chinese)[14] 席裕庚, 柴天佑,恽为民. 遗传算法综述[J]. 控制理论与应用, 1996,13(6): 697-708. XI Y G, ChAI T Y, YUN W M. Survey on genetic algorithm[J]. Control Theory and Applications, 1996,13(6): 697-708.(in Chinese)