HUANG Qun-dong, YANG Fang, ZHAO Jiang. Calculation of image motion velocity for agile satellite dynamic imaging to changed continuously attitude point[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2812-2820
According to the principle of push-broom imaging of a linear array Time Delay Integration(TDI) CCD
the image motion in dynamic imaging of a agile satellite is analyzed in three-axis attitude maneuvering. As the changed continuously attitude points to the earth can change the spatial orientation and result in a changed image motion velocity
the image quality and image resolution will be deteriorated. To decrease the influence of attitude change on image quality
this article uses the coordinate transformation to acquire the mathematical expression of the image motion velocity in dynamic imaging
and obtains the variety of the image motion velocity in simulation analysis to quantify the magnitude of the integration time. Numerical simulation shows that the current level of space camera can achieve the max angular velocity limit dynamic push-broom imaging of 0.5()/s on an orbit height of 700 km. When the attitude maneuvering angular velocity is greater than 0.5()/s
it needs to design a high level camera because the exposure time is shorter and shorter. Based on the above conclusion
it suggests that the magnitude of integration time for TDI CCD TDI) should be quantified for dynamic imaging at different angle speeds
and only in this way can the push-broom dynamic imaging be implemented in three-axis attitude maneuvering.
关键词
Keywords
references
HUANG Q L, LI X M. Application of TDICCD on real-time earth reconnaissance satellite //Proc. Of SPIE, Automated Optical Inspection for Industry: Theory, Technology and Applications Ⅱ (3558) Washington, 1998:93-104.[2] 黄群东, 杨芳, 赵键. 敏捷成像速度失配时的偏流角计算及姿态补偿. 2011年先进航天控制技术发展学术会议,黄山,2011:136-144. HUANG Q D, YANG F, ZHAO J. Calculation and attitude compensation for the drift angle caused by the agile imaging and the velocity mismatch. 2011, The Development Of Advanced Space Control Technologies Conference,Huangshan,2011:136-144.(in Chinese)[3] 王家骐, 于平, 颜昌翔, 等. 航天光学遥感器像移速度矢计算数学模型[J]. 光学学报, 2004,24(12):1585-1589. WANG J Q, YU P, YAN C X, et al.. Space optical remote sensor image motion velocity vector computational modeling[J]. Acta Optica Sinica, 2004,24(12):1585-1589.(in Chinese)[4] 颜昌翔, 王家骐. 航相机像移补偿计算的坐标变换方法[J]. 光学精密工程, 2006,14(3):203-207. YAN C X, WANG J Q. Method of coordinate transformation for IM&IMC calculation in aerospace camera system[J]. Opt. Precision Eng., 2006,14(3):203-207.(in Chinese)[5] 王运, 颜昌翔. 基于差分法的空间相机像移速度矢量计算[J]. 光学精密工程, 2011,19(5):1054-1060. WANG Y, YAN C X. Computation of image motion velocity vector for space camera based on difference method[J].Opt. Precision Eng., 2011,19(5):1054-1060.(in Chinese)[6] 闫得杰, 韩诚山, 李伟雄. 飞行器侧摆和前后摆及控制误差的优化设计[J]. 光学精密工程, 2009,17(9):2224-2229. YAN D J, HAN C S, LI W H. Optimization design of scroll and pitch and their control errors on aerocraft [J]. Opt. Precision Eng., 2009,17(9):2224-2229.(in Chinese)[7] 闫得杰, 徐抒岩, 韩诚山. 飞行器姿态对空间相机像移补偿的影响[J]. 光学精密工程, 2008,16(11):2199-2203. YAN D J, XU S Y, HAN C S. Effect of aerocraft attitude on image motion compensation of space camera [J]. Opt. Precision Eng., 2008,16(11):2199-2203.(in Chinese)[8] JEAN J, ERIC J, GRARD L, et al.. Attitude guidance technics developed in CNES for earth observation and scientific missions. The 28th Annual AAS Guidance and Control Conference, Breckenridge,2005:11-16.[9] PERRET L, BOUSSARIE E, LACHIVER J M, et al.. The Pliades system high resolution optical satellite and its performances. The 53rd International Astronautical Congress The World Space Congress, Houston,2002.[10] 刘一武, 张军. 敏捷卫星快速姿态机动控制方法研究. 全国第十三届空间及运动体控制技术学术年会论文集, 宜昌, 2008:1-6. LIU Y W, ZHANG J. Agile satellite fast attitude maneuver control method research. The Thirteenth National Conference On Space And Motion Control Technology Conference, Yichang, 2008:1-6.(in Chinese)[11] 樊超, 李英才, 易红伟. 速高比对TDICCD相机的影响分析[J]. 兵工学报, 2007,28(7):817-821. FAN C, LI Y C, YI H W. Influence of Velocity-Height ratio of satellite on the TDICCD camera[J]. Acta Armamentarii, 2007,28(7):817-821.(in Chinese)[12] MILLER B M, RUBINOVICH E Y. Image motion compensation at charge-coupled device photographing in delay Integration mode [J]. Automation and Remote Control, 2007, 68(3):564-571.[13] OLSON G. Image motion compensation with frame transfer CCD's [J]. SPIE, 2002,4567:153-160.[14] SMITH S L,TANTALO J M. Understanding image quality losses due to smear in high-resolution remote sensing imaging system [J].Opt Eng,1999,38(5):821-826.[15] 翟林培, 刘明, 修吉宏. 考虑飞机姿态角时倾斜航空相机像移速度计算 [J]. 光学精密工程, 2006, 14(3):490-494. ZHAI L P, LIU M, XIU J H. Calculation of image motion velocity considering airplane gesture angle in oblique aerial camera [J]. Opt. Precision Eng., 2006, 14(3):490-494.(in Chinese)[16] DAMILANO P. Pleiades high resolution satellite: a solution for military and civilian needs in metric-class optical observation. The 15th Annual/USU Conference on Small Satellites, 2001.[17] 张林, 吴晓琴, 汤宫民. 基于MTF的时间延迟积分CCD成像系统同步误差分析[J]. 应用光学, 2006, 27(2):167-170. ZHANG L, WU X Q, TANG G M. Analysis of synchronization error for time delayed integration (TDI) CCD imaging system based on MTF[J]. Journal of Applied Optics, 2006, 27(2):167-170.(in Chinese)