YANG Bin-tang ZHAO Yin PENG ZHi-bin MENG Guang. Real-time compensation control of hysteresis based on Prandtl–Ishlinskii operator for GMA[J]. Editorial Office of Optics and Precision Engineering, 2013,21(1): 124-130
YANG Bin-tang ZHAO Yin PENG ZHi-bin MENG Guang. Real-time compensation control of hysteresis based on Prandtl–Ishlinskii operator for GMA[J]. Editorial Office of Optics and Precision Engineering, 2013,21(1): 124-130 DOI: 10.3788/OPE.20132101.0124.
Real-time compensation control of hysteresis based on Prandtl–Ishlinskii operator for GMA
Giant Magnetostrictive Actuator(GMA) has complex hysteretic nonlinearities
which can degrade system performance and cause system instability. To solve the problem
this paper establishes a model to accurately describe hysteretic phenomenon and propose a proper method to improve real-time control accuracy. Firstly
Prandtl-Ishlinskii(PI) operator is proposed in this paper to model the hysteresis of GMA and Least Mean Square(LMS) algorithm is used identify the parameter of this model
by which the prediction error reaches up to 0.037 9 m. Then
an inverse model is established based on the PI model for real-time compensation control of the hysteresis
and the inverse control error reaches up to 0.309 m. The experimental results demonstrate that PI operator can accurately characterize the GMA hysteresis
and the model has advantages of simple calculation and strong hysteretic tracking ability. The real-time compensation control of hysteresis can effectively reduce hysteretic errors and improve real-time control accuracy. It is a effective way to achieve precision driving control of GMAs.
关键词
Keywords
references
徐彭有,杨斌堂,孟光,等. 天文望远镜超磁致伸缩驱动器驱动模型及参数辨识[J]. 天文研究与技术,2010,7(2) :150-157.XU P Y, YANG B T, MENG G, et al.. Modeling and parameter identification for giant magnetostrictive actuators applied in driving segmented mirrors [J]. Astronomical Research & Technology, 2010, 7(2) :150-157.(in Chinese)[2]贾振元,王福吉,张菊,等.超磁致伸缩执行器磁滞非线性建模与控制[J]. 机械工程学报,2005,41(7):131-135.JIA ZH Y, WANG F J, ZHANG J, et al.. Hysteresis nonlinearity modeling and control of giant magnetostrictive actuator[J]. Chinese Journal of Mechanical Engineering, 2005, 41(7):131-135. (in Chinese)[3] 赖志林,刘向东,耿洁,等.压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学 精密工程,2011,19(6) :1281-1290.LAI ZH L, LIU X D, GENG J, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse preisach compensation [J]. Opt. Precision Eng., 2011, 19(6) :1281-1290. (in Chinese)[4]李建强. 三自由度磁致伸缩驱动平台建模仿真与控制研究[D].上海:上海交通大学,2012.LI J Q. Research on a 3-D platform driven by giant Magnetostrictive actuator[D]. Shanghai:Shanghai Jiao Tong University, 2012. (in Chinese)[5]JANOCHA H, KUHNEN K. Real-time compensation of hysteresis and creep in piezoelectric actuators[J]. Sensors and Actuators, 1999, 79(2000):83-89.[6]张栋,张承进,魏强.压电微动工作台的动态迟滞模型[J]. 光学 精密工程,2009,17(3) :549-556.ZHANG D, ZHANG CH J, WEI Q. Dynamic hysteresis model of piezopositioning stage [J]. Opt. Precision Eng., 2009, 17(3) :549-556. (in Chinese).[7]徐彭有.超磁致伸缩驱动器精密位移驱动控制研究[D].上海:上海交通大学,2010.XU P Y. Research on the micro positioning control of giant magnetostrictive actuator[D]. Shanghai:Shanghai Jiao Tong University,2010. (in Chinese)[8]赵春晖,张朝柱,王立国,等. 自适应信号处理技术[M]. 北京:北京理工大学出版社,2009.ZHAO CH H, ZHANG CH ZH, WANG L G, et al.. Adaptive Signal Processing Techniques[M]. Beijing:Beijing Institute of Technology Press,2007. (in Chinese)[9]WIDRW B,STEARMS S D. Adaptive Signal Processing [M]. New Jersey:Prentice Hall,1985.[10]KUHNEN K. Modeling identification and compensation of complex hysteresis nonlinearities A modified prandtl-ishlinskii approach [J]. Europen Journal of Control, 2003, 9(4):407-418.[11]KUHNEN K, JANOCHA H. Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems[J]. Control and Intelligent Systems, 2001, 29(3):74-83.