LI Peng-zhi GE Chuan SUN Zhi-de YAN Feng SUI Yong-xi YANG Huai-jiang. Control of piezoelectric ceramic actuator via dynamic fuzzy system model[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 394-399
LI Peng-zhi GE Chuan SUN Zhi-de YAN Feng SUI Yong-xi YANG Huai-jiang. Control of piezoelectric ceramic actuator via dynamic fuzzy system model[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 394-399 DOI: 10.3788/OPE.20132102.0394.
Control of piezoelectric ceramic actuator via dynamic fuzzy system model
As the nonlinear hysteresis characteristic of a Piezoelectric Ceramic Actuator(PZT) has a big impact on periodic ultra-precise tracking accuracy
this paper investigates a methodology which combines the Dynamic Fuzzy System(DFS) feed-forward based on Takagi-Sugeno(T-S) fuzzy rule with the PI control. The identification methods of DFS antecedent and consequent structures are introduced. Then
DFS feed-forward with PI control strategy of periodic trajectory tracking is proposed according to theories of direct inverse model control and iterative learning control. Finally
the tracking control experiment is performed on a 20Hz triangular trajectory and a sinusoidal desired trajectory. Experimental results indicate that the proposed control method can achieve 0.25% and 0.27% maximum tracking errors for triangular and sinusoidal trajectories
which are 52 and 64 times as accurate as that of PI control. Moreover
the maximum absolute tracking errors have been reduced to 5.1 nm and 5.5 nm
respectively. It concludes that the methodology can be easily implemented and has high periodic trajectory tracking accuracy.
关键词
Keywords
references
贾宏光,郑岩,吴一辉,等.非线性模型的压电元件复合控制方法[J].光学 精密工程,2007,15(10): 1547-1552.JIA H G, ZHENG Y, WU Y H, et al.. PZT actuator control complex arithmetic based on nonlinear model [J]. Opt. Precision Eng., 2007, 15(10): 1547-1552. (in Chinese)[2]孙立宁, 孙绍云, 曲东升, 等. 基于PZT的微驱动定位系统及控制方法的研究[J].光学 精密工程,2004,12(1): 55-59.SUN L N, SUN SH Y, QU D SH, et al.. Micro-drive positioning system based on PZT and its control [J]. Opt. Precision Eng., 2004, 12(1):55-59. (in Chinese)[3]赖志林, 刘向东, 耿洁, 等. 压电陶瓷执行器迟滞的滑模逆补偿控制[J].光学 精密工程,2011,19(6): 1281-1290.LAI ZH L, LIU X D, GENG J, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse Preisach compensation [J]. Opt. Precision Eng., 2011, 19(6): 1281-1290. (in Chinese)[4]ZHANG X L, TAN Y H, SU M Y.Modeling of hysteresis in piezoelectric actuators using neural networks [J]. Mechanical Systems and Signal Processing, 2009, 23: 2699-2711.[5]ZHANG X L, TAN Y H, SU M Y, et al..Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators [J]. Physica B, 2010, 405:2687-2693.[6]YONG Y K, APHALE S, MOHEIMANI S O R. Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning [J]. IEEE Transactions on Nanotechnology, 2009, 8(1): 46-54.[7]LI Y M, XU Q S. Development and assessment of a novel decoupled XY parallel micropositioning platform [J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(1):125-135.[8]SUGENO M, YASUKAWA T. A fuzzy-logic-based approach to qualitative modeling [J]. IEEE Transactions on Fuzzy Systems, 1993, 1(1): 7-31.[9]WANG L X, MENDEL J M. Generating fuzzy rules from numerical data with applications [J]. IEEE Transactions on System, Man and Cybernetics, 1992,22(6):1414-1427.[10]GEORGE T, HARALAMBOS S, GEORGE B. A simple algorithm for training fuzzy systems using input-output data [J]. Advances in Engineering Software, 2003, 34: 247-259.[11]LI P Z, GU G Y, LAI L J, et al.. Hysteresis modeling of piezoelectric actuators using the fuzzy system [C]. The 3rd International Conference on Intelligent Robotics and Applications, ICIRA 2010, LNAI, 2010, 6424(1): 372-382.