ZHU Xian-chang WU fan CAO Xue-dong WU Shi-bin. Focal length measurement of microlens-array based on wavefront testing principle of Hartmann-Shack sensor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(5): 1122-1128
ZHU Xian-chang WU fan CAO Xue-dong WU Shi-bin. Focal length measurement of microlens-array based on wavefront testing principle of Hartmann-Shack sensor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(5): 1122-1128 DOI: 10.3788/OPE.20132105.1122.
Focal length measurement of microlens-array based on wavefront testing principle of Hartmann-Shack sensor
A method to measure the focal length of Microlens-Array (MLA) is proposed based on Hartmann-Shack wavefront measurement principle and the Focus Determining Technique by Image Definition(FDTID). The composition of the measurement system is introduced and the measuring principle is given. Firstly
the plane wavefront from a collimator is imaged nearby the focus of the MLA,and the spherical wavefront induced by the standard lens is also imaged on the focus. Then
the focal length of MLA is calculated by determining the excursion between plane wavefront and spherical wavefront measurements. Finally
an experiment based on the analysis of measurement uncertainty and the application of FDTID is preformed to validate the feasibility of the proposed method. The measuring results demonstrate that the focal length measurement precision is about 3% and several sub-lenses of the MLA can be determined at single shot. It concludes that this method has higher precision and efficiency in the focal length measurement of MLA as compared with traditional methods.
关键词
Keywords
references
郭方,王克逸,闫佩正,等. 用于大视场目标定位的复眼系统标定 [J]. 光学 精密工程, 2012,20(5):913-920.GUO F, WANG K Y, YAN P ZH, et al.. Calibration of compound eye system for target positioning with large field of view [J]. Opt. Precision Eng., 2012, 20(5): 913-920. (in Chinese)[2]SCHONBRUN E. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array [J]. Optics Express, 2011, 19(2): 1385-1394.[3]TOLOSA A. Optical implementation of micro-zoom arrays for parallel focusing in integral imaging [J]. Opt. Soc. Am., 2010, 27(3): 495-499.[4]MIYASHITA T. Standardization for microlenses and microlens array [J]. Japanese Journal of Applied Physics, 2007, 46(8B): 5391-5396.[5]殷智勇,汪岳峰,贾文武, 等. 基于微透镜阵列光束均匀化的傅里叶分析[J]. 激光与红外,2012,42(2): 119-123.YIN ZH Y, WANG Y F, JIA W W, et al.. Fourier analysis of light beam uniformity based on the microlens array [J]. Laser & Infrared, 2012, 42 (2): 119-123. (in Chinese)[6]赵润,孙雷,王文军,等. 用于均匀照明的单片微透镜阵列面型设计 [J]. 材料与器件,2011,36(12):915-919.ZHAO R, SUN L, WANG W J, et al.. Design of monolithic microlens array for homogeneous illumination [J]. Materials and Devices, 2011, 36(12): 915-919. (in Chinese)[7]张健,辛悦,刘伟奇, 等. 基于微透镜阵列的三维成像 [J]. 光学 精密工程,2009,17(7):1701-1706.ZHANG J, XIN Y, LIU W Q, et al.. Three-dimensional digital imaging based on microlens array [J]. Opt. Precision Eng., 2009, 17(7): 1701-1706. (in Chinese)[8]赵祥杰,骆永全,张大勇. 液晶微透镜阵列在波前传感领域的应用概述 [J]. 光电子技术,2010,30(3):145-153.ZHAO X J, LUO Y Q, ZHANG D Y. The application of liquid crystal microlens array technology in the field of wave front sensor rearch [J]. Optoelectronic Technology, 2010, 30(3): 145-153. (in Chiense)[9]林旭东,薛陈,刘欣悦,等. 自适应光学波前校正器技术发展现状[J]. 中国光学,2012(4):337-351.LIN X D, XUE CH, LIU X Y, et al.. Currents status and research development of wavefront correctors for adaptive optics [J]. Chinese Optics, 2012(4): 337-351. (in Chinese)[10]李晖,张新宇,张天序,等. 电控可变焦128128元自适应液晶微透镜阵列 [J]. 光学 精密工程, 2009,17(10):2351-2358.LI H, ZHANG X Y, ZHANG T X, et al.. Electrically driving and controlling adaptive 128 element 128 element liquid crystal micro-lens array with tunable focal length [J]. Opt. Precision Eng., 2009, 17(10): 2351-2358. (in Chinese)[11]XIE D, ZHANG H H, SHU X Y, et al.. Fabrication of polymer microlens array with pneumatically diaphragm-driven drop-on-demand inkjet technology [J]. Optics Express, 2012, 20(14): 15186-15195.[12]BARDINAL V, DARAN E. Fabrication an characterization of microlens arrays using a cantilever-based spotter [J]. Optics Express, 2007, 15(11): 6900-6907.[13]YI A Y, LI L. Design and fabrication of a microlens array by use of a slow tool servo [J]. Optics Letters, 2005, 30(13): 1707-1709.[14]LEI F, DANG L K. Measuring the focal length of optical systems by grating shearing interferometry [J]. Applied Optics, 1994, 33(28): 6603-6608.[15]REICHELT S, ZAPPE H. Combined twyman-green and mach-zehnder interferometer for microlens testing [J]. Applied Optics, 2005, 44(27): 5786-5792.[16]张鹏,曹学东,吴时彬,等. 基于图像测量技术的微透镜定焦方法研究 [J]. 仪器仪表用户,2008,5:15-16.ZHANG P, CAO X D, WU SH B, et al.. The application of image processing technology for the measurement of micro-lens array focus [J]. Electronic Instrumentation Customer, 2008,5:15-16. (in Chinese)[17]朱咸昌,曹学东,吴时彬,等.基于光栅多缝衍射测量微透镜焦距[J]. 光学学报,2011,31(5):52301.ZHU X CH, CAO X D, WU SH B, et al.. Focal length measurement of microlens by rotation method based on grating multiply diffraction [J]. Acta Optica Sinica, 2011, 31(5): 52301. (in Chinese)[18]朱咸昌,伍凡,曹学东,等.光栅衍射法测量微透镜阵列焦距时产生的光斑干扰分析 [J]. 光学学报,2011,31(11):1112010.ZHU X CH,WU F,CAO X D, et al.. Analysis of focus dislocation induced by the microlens array measuring based on grating diffraction [J]. Acta Optica Sinica, 2011, 31(11): 1112010. (in Chinese)[19]沙定国. 光学测试技术\[M\]. 北京:北京理工大学出版社,2010.SHANG D G. Optics Testing Technology \[M\]. Beijing: Beijing Institute of Technology Press, 2010. (in Chinese)