LIU Bo GUO Jian-ying SUN Yong-quan. Modeling and Control for Piezo-Actuated Micro-Displacement Stage[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1503-1509
LIU Bo GUO Jian-ying SUN Yong-quan. Modeling and Control for Piezo-Actuated Micro-Displacement Stage[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1503-1509 DOI: 10.3788/OPE.20132106.1503.
Modeling and Control for Piezo-Actuated Micro-Displacement Stage
When a white light interferometer is applied to 3D surface microcosmic topographic measurement
the measuring accuracy is effected by the hysteresis and creeping phenomenon generated by the piezoelectric actuator seriously. Therefore
this paper proposes a method to improve the displacement accuracy of the reference mirror along the optical axis direction. The piezoelectric actuator is given
and its displacement detecting circuit
PID closed loop control algorithms
and creep compensation control are studied. First
displacement detecting circuit is established by a position sensitive device and an optical lever
by which the piezoelectric ceramic micro-displacement can be fed back to control the system
then the PID closed-loop control algorithm is established. Furthermore
the creeping characteristics of piezoelectric ceramic is discussed during the measurement. In order to eliminate the creeping phenomenon and improve measurement accuracy
the voltage creep compensation model is proposed. Finally
an integer control system based on PID closed-loop control and creep compensation control is established. The micro-displacement of the piezoelectric actuator is measured by a high-precision XL-80 laser interferometer under the two cases of PID closed-loop control and integer control. Experimental results indicate that the displacement error for the former is 0.007 m
and that for the latter is 0.005 m
respectively. This method reduces the influence of hysteresis and creeping on measurement results
and meets the requirements of three-dimensioned shape measurement for high accuracy.
关键词
Keywords
references
孙立宁, 荣伟彬, 曲东升, 等. 基于微操作的大行程高分辨率旋转微驱动器的研究[J]. 光学 精密工程,2001, 9(6):514-519.SUN L N, RONG W B, QIU D SH, et al.. Research on a large travel and high resolution rotary micro2driver based on micro-manipulation [J]. Opt. Precision Eng., 2001, 9(6):514-519. (in Chinese)[2]赖志林, 刘向东, 耿洁, 等. 压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学 精密工程,2011, 19(6):1281-1290.LAI Z L, LIU X D, GENG J, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse preisach compensation [J]. Opt. Precision Eng., 2011, 19(6):1281-1290.[3]张栋, 张承进, 魏强, 等. 压电工作台的神经网络建模与控制[J]. 光学 精密工程, 2012, 20(3):577-586.ZHANG D, ZHANG CH J, WEI Q, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse preisach compensation [J]. Opt. Precision Eng., 2012, 20(3):577-586. (in Chinese)[4]MAYERGOYZ I D. Mathematical Model of Hysteresis [M]. New York: Springer, 1991.[5]GE P, JOUANEH M. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators [J]. Precision Engineering,1997, 20(2):99-111.[6]贾宏光. 基于变比模型的压电驱动微位移工作台控制方法研究[D]. 中国科学院长春光学精密机械与物理研究所, 2000.JIA H G. Study on Feed Forward Control Method to Micro Positioning System Driven by PZT Basing on Non-equi-ration Model [D]. Changchun:Changchun Institue of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2000.(in Chinese)[7]GOLDFARB M, CELANOVIC N. Modeling piezoelec- tric stack actuators for control of micromanipulation [J]. IEEE, 1997, 17 (3):69-79.[8]BANNING R, KONIN G W L, ADRIAENS H J, et al.. State space analysis and identification for a class of hysteretic systems [J]. Automatica, 2001, 37(12):1883- 1892.[9]宾洋, 杨东超, 陈娜娜, 等. 新型压电驱动机电耦合动力学系统分析与建模[J]. 电机与控制学报. 2008, 12(2):179-185.BIN Y, YANG D CH, CHEN N N, et al.. Analysis and modeling of a novel piezo-actuated electromechanical coupling dynamic system [J]. Electric Machines and Control,2008, 12(2):179-185. (in chinese)[10]朱猛,黄战华,王小军,等. 显微动态散斑法测量压电陶瓷位移特征曲线[J]. 光学 精密工程, 2011, 19(4):844-849.ZHU M, HUANG ZH H, WANG X J, et al.. Measurement of piezoelectric displacement characteristic curves using dynamic speckle correlation [J]. Opt. Precision Eng., 2011, 19(4):844-849. (in Chinese)[11]张波, 王纪武, 陈恳, 等. 压电驱动晶体的特性研究 [J]. 中国机械工程, 2002, 13(5):446-450.ZHANG B, WANG J W, CHEN K, et al.. Study on the hysteresis property of piezoelectric actuator [J]. China Mechanical Engineering, 2002, 13(5):446-450.[12]KOOPS R, SAWATZKY G A. New scanning device for scanning tunneling microscope applications [J]. Review of Scientific Instruments, 1992, 63 (8): 4008-4009.[13]NEWCOMB CV, FLINN I. Improving the linearity of piezoelectric ceramic actuators [J]. Electronics Letters, 1982, 18(11):442-444.[14]RIFAIO M E, AUMOND B D, TOMI K Y. Imaging at the nano-scale [C]. Proceedings 2003 IEEE/ A SME International Conference, Monterey , California, 2003: 715-722.[15]范伟,余晓芬. 压电陶瓷驱动器蠕变特性的研究 [J].仪器仪表学报,2006, 27(11): 1383-1387.FAN W, YU X F. Study on PZT actuator creep characteristics [J]. Chinese Journal of Scientific Instrument, 2006, 27(11):1383-1387.[16]肖祥丽, 张承进. 一种原子力显微镜中蠕变迟滞非线性特性补偿方案 [J]. 福州大学学报(自然科学版), 2008, 36(9):4-8. XIAO X L, ZHANG CH J. A compensating scheme for hysteresis and creep in atomic force microscope scanner [J]. Journal of Fuzhou University (Natural Science), 2008, 36(9):4-8.[17]CROFT D,SHED G,DEVASIA S. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application [J]. Journal of Dynamic Systems, Measurement, and Control, 2001,123:35-43, March.[18]HEWON J, GWEON D G. Creep characteristics of piezoelectric actuators [J]. Review of Scientific Instruments,2000, 71(4):1896-2000.[19]HEWON J,JONG Y S,GWEON D G. New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep [J]. Review of Scientific Instruments, 2000, 71(9):3436-3451.