XIAO Qian-jin JIA Hong-guang ZHANG Jia-bao HAN Xue-feng XI Rui. Identification and compensation of nonlinearity for electromechanical actuator servo system[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2038-2047
XIAO Qian-jin JIA Hong-guang ZHANG Jia-bao HAN Xue-feng XI Rui. Identification and compensation of nonlinearity for electromechanical actuator servo system[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2038-2047 DOI: 10.3788/OPE.20132108.2038.
Identification and compensation of nonlinearity for electromechanical actuator servo system
To improve the tracking accuracy of an electromechanical actuator servo system
the methods to identify and compensate the noninearities of friction and backlash were put forward. The mathematical models based on the LuGre friction and the hysteresis backlash were established for the electromechanical actuator servo system with position loop and speed loop controllers. According to the identified nonlinearity models
the friction was compensated though a feed-forward method
and the backlash was compensated simultaneously though an inverse model as well. The experiments indicate that the maximum position tracking error of system after compensation decreases from 0.166 to 0.096
and the maximum speed tracking error decreases from 2.723 r/min to 0.393 r/min when the given signal is sine wave with an amplitude of 1 and a frequency of 2.5 Hz. It concluds that the friction and backlash models can be accurately obtained by the proposed identification methods
and the tracking accuracy of the electromechanical actuator servo system can be improved through nonlinearity compensation on the basis of the proposed models.
关键词
Keywords
references
彭书华,李华德,苏中.非线性摩擦干扰下的电动舵机滑模变结构控制[J].信息与控制,2008,37(5):637-640.PENG SH H, LI H D,SU ZH. Sliding model variable structure control for electromechanical actuator with nonlinear friction [J]. Information and Control, 2008, 37(5): 637-640. (in Chinese)[2]李友年,陈星阳.舵机间隙环节对控制系统的影响分析[J].航空兵器,2012,(1):25-33.LI Y N, CHEN X Y. Influence analysis of actuators gap on control system [J]. Aero Weaponry, 2012, (1): 25-33. (in Chinese)[3]黄立梅,吴成富,马松辉.抑制飞控系统舵机间隙影响的非线性补偿器设计[J].飞行力学,2012,30(2):132-138.HUANG L M, WU CH F, MA S H. Design of a nonlinear compensator for depressing the influence of actuators clearance in flight control system [J]. Flight Dynamics, 2012, 30(2):132-138. (in Chinese)[4]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52.LIU Q, ER L J, LIU J K. Overview of characteristics, modeling and compensation of nonlinear friction in servo systems [J]. Systems Engineering and Electronics, 2002, 24(11): 45-52. (in Chinese)[5]赵国峰,樊卫华,陈庆伟,等.齿隙非线性研究进展[J].兵工学报,2006,27(6):1072-1080.ZHAO G F, FAN W H, CHEN Q W, et al..A survey on backlash nonlinearity [J]. Acta Armamentarii, 2006, 27(6): 1072-1080. (in Chinese)[6]SHAO ZH Y, FANF D Y, ZHANG X D. Adaptive high precision position control of servo actuator with friction compensation using LuGre model [J]. Journal of Beijing Institute of Technology, 2011, 20(1): 105-110. (in Chinese)[7]HAN K H, KOH G O, SUNG J M, et al.. Adaptive control approach for improving control systems with unknown backlash[J]. IEEE International Conference on Control, Automation and Systems, 2011, 1919-1923.[8]史建伟,史永丽.基于自抗扰控制的伺服系统输出间隙补偿研究[J].电力学报,2009,24(2):105-108.SHI J W, SHI Y L. Compensation of output backlash in servo systems based on auto-disturbance-rejection control[J]. Journal of Electric Power, 2009, 24(2):105-108. (in Chinese)[9]DAIKI H, NORIHIRO K, JUN I. Friction compensation using time variant disturbance observer based on the LuGre model [C]. The 12th IEEE International Workshop on Advanced Motion Control, 2012.[10]JANG J O, LEE P G, CHUNG H T, et al.. Output backlash compensation of systems using fuzzy logic[C]. Proceeding of the American Control Conference, 2003: 2489-2490.[11]陈涛,陈娟,蒋凤华.伺服系统两种低速非线性补偿方法的对比[J].光学 精密工程,2003,11(1):94-97.CHEN T, CHEN J, JIANG F H. Two low-speed nonlinear compensations for servo system[J]. Opt. Precision Eng., 2003, 11(1): 93-97. (in Chinese)[12]向红标,裘祖荣,李醒飞,等.精密实验平台的非线性摩擦建模与补偿[J].光学 精密工程,2010,18(5):1119-1127.XIANG H B, QIU Z R, LI X F, et al.. Nonlinear friction modeling and compensation of high-precision experimental platforms[J]. Opt. Precision Eng., 2010, 18(5): 1119-1127. (in Chinese)[13]刘丽兰,刘宏昭,吴子英,等.机械系统中摩擦模型的研究进展[J].力学进展,2008,38(2):201-213.LIU L L, LIU H ZH, WU Z Y, et al.. An overview of friction models in mechanical systems[J]. Advances In Mechanics, 2008, 38(2): 201-213. (in Chinese)[14]TAO G, KOKOTOVIC P V. Adaptive control of systems with unknown output backlash [C]. IEEE Transactions on Automatic Control, 1995, 40(2): 326-330.[15]CANUDA C, OLSSON H, ASTROM K J, et al.. A new model for control of systems with friction [C]. IEEE Transaction on Automatic Control, 1995, 40(3):419-425.[16]于伟,马佳光,李锦英,等.基于LuGre模型实现精密伺服转台摩擦参数辨识及补偿[J].光学 精密工程,2011,19(11):2736-2743.YU W, MA J G, LI J Y, et al.. Friction parameter identification and friction compensation for precision servo turning table[J]. Opt. Precision Eng., 2011, 19(11): 2736-2743. (in Chinese)[17]刘柏希.基于改进链码法的LuGre摩擦模型动态参数辨识[J].计算力学学报,2012,29(2):279-283.LIU B X. Parameters identification for LuGre friction model based on modified chain code recognition method [J]. Chinese Journal of Computational Mechanics, 2012, 29(2): 279-283. (in Chinese)[18]谭文斌,李醒飞,向红标,等.应用稳态误差分析辨识LuGre模型参数[J].光学 精密工程,2011,19(3):664-671.TAN W B, LI X F, XIANG H B, et al.. Parameter identification of LuGre model based on analysis of steady state error[J]. Opt. Precision Eng., 2011, 19(3): 664-671. (in Chinese)[19]刘丽兰,刘宏昭,吴子英,等.考虑摩擦和间隙影响的机床进给伺服系统建模与分析[J].农业机械学报,2010,41(11):212-218.LIU L L, LIU H ZH, WU Z Y, et al.. Modeling and analysis of machine tool feed servo systems with friction and backlash [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 212-218. (in Chinese)[20]韩雪峰.含间隙刚柔耦合电动舵机关键技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2011.HAN X F. Research on the Key Technology of Rigid-flexible Coupling Electric Actuator Servo System with Clearance[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2011. (in Chinese)