YOU Jing-jing LI Cheng-gang WU Hong-tao. Parameter identification of parallel type six-axis accelerometer[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2627-2638
YOU Jing-jing LI Cheng-gang WU Hong-tao. Parameter identification of parallel type six-axis accelerometer[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2627-2638 DOI: 10.3788/OPE.20132110.2627.
Parameter identification of parallel type six-axis accelerometer
The parameter identification of a six-axis accelerometer is a difficult problem due to its higher input and output volumes and linear dynamic equation. According to this
a four-step method was proposed to identify the 25 decoupling parameters of a parallel type six-axis accelerometer. A calibration platform based on double slider-crank mechanisms was designed and processed to provide the external stimulation and a virtual instrument based on LabVIEW was developed to provide the software support for the parameter identification. The first sets of parameters were identified by averaging pretreatment data in static state. By putting the sensor on the platform to do a pure line movement with the frequency of 1-2 Hz
the dynamic equations were simplified to linear algebraic equations
then the second set of parameters were identified by using the least square method. Similarly
the third set of parameters were identified when the sensor did a pure angular movement with the frequency of 1-2 Hz. The fourth set of parameters were identified by one-dimensional searching about stiffness to mass ratio when the sensor did the pure line movement with the frequency of 4-5 Hz. Experimental results indicate that the maximum relative error is 7.479% after using the identified parameters to decouple the six-axis acceleration
which reduces a magnitude compared to that before parameter identification. Above results verify that the proposed four-step method is correct and feasible.
关键词
Keywords
references
TZUU H, CHING CH CH, YU T S. Optical image stabilizing system using fuzzy sliding-mode controller for digital cameras [J]. IEEE Transactions on Consumer Electronics, 2012,58(2):237-245.[2]LIN P CH, LU J CH, TSAI CH H, et al.. Design and implementation of a nine-axis inertial measurement unit [J]. IEEE/ASME Transactions on Mechatronics, 2012,17(4):657-668.[3]尤晶晶,李成刚,吴洪涛. 并联式六维加速度传感器的哈密顿动力学研究[J].机械工程学报,2012,48(15): 9-17.YOU J J, LI C G, WU H T. Research on Hamiltonian dynamics of parallel type six-axis accelerometer [J]. Journal of Mechanical Engineering, 2012,48(15): 9-17.(in Chinese) [4]ZUMER J, REYNAERTS D, BOLTEZAR M. An advanced nonlinear model of a low-g MEMS accelerometer for a computer pen [J]. Measurement, 2012,45(3):459-468.[5]PETER S, HUBERT G. State estimation on flexible robots using accelerometers and angular rate sensors [J]. Mechatronics, 2012(22):1043-1049.[6]毕树生,宗光华. 用于生物工程的微操作机器人系统的若干问题[J].仪器仪表学报,2000,21(6):560-565.BI S S, ZONG G H. Some issues on bio-micromanipulator system [J]. Chinese Journal of Scientific Instrument, 2000,21(6):560-565.(in Chinese) [7]WANG D H, YUAN G. A six degree of freedom acceleration sensing method based on six coplanar single axis accelerometers [J]. IEEE Transactions on Instrumentation and Measurement, 2011,60(4):1433-1442.[8]赵磊,刘巍,巩岩. 预紧式Stewart结构六维力/力矩传感器[J].光学 精密工程,2011,19(12):2954-2962.ZHAO L, LIU W, GONG Y. Pre-stressed six-axis force/torque sensor based on Stewart platform [J]. Opt. Precision Eng., 2011,19(12):2954-2962 .(in Chinese) [9]侯雨雷,曾达幸,姚建涛,等. 超静定并联式六维力传感器动力学[J].光学 精密工程,2009,17(7): 1594-1601.HOU Y L, ZENG D X, YAO J T, et al.. Dynamics of hyperstatic parallel six-component force sensor [J]. Opt. Precision Eng., 2009,17(7): 1594-1601.(in Chinese) [10]尤晶晶,李成刚,吴洪涛. 基于并联机构的六维加速度传感器的方案设计及建模研究[J].振动工程学报,2012,25(6):658-666.YOU J J, LI C G, WU H T. Study on the scheme design and modeling of six-axis accelerometer based on parallel mechanism [J]. Journal of Vibration Engineering, 2012,25(6):658-666 .(in Chinese) [11]尤晶晶. 基于6-SPS并联机构的压电式六维加速度传感器的研究[D] .南京:南京航空航天大学,2010.YOU J J. Research on a piezoelectric six-axis accelerometer based on 6-SPS parallel mechanism [D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010.(in Chinese)[12]高贯斌,王文,林铿,等. 圆光栅角度传感器的误差补偿及参数辨识[J].光学 精密工程,2010,18(8): 1766-1772.GAO G B, WANG W, LIN K, et al.. Error compensation and parameter identification of circular grating angle sensors [J]. Opt. Precision Eng., 2010,18(8): 1766-1772.(in Chinese) [13]魏强,张承进,张栋,等. 压电陶瓷驱动器的滑模神经网络控制[J].光学 精密工程,2012,20(5):1055-1063.WEI Q, ZHANG C J, ZHANG D, et al.. Neural network control for piezo-actuator using sliding-mode technique [J]. Opt. Precision Eng., 2012,20(5): 1055-1063.(in Chinese) [14]陶俊勇,刘彬,陈循. 气动式振动台激振器低温失效机理研究及结构改进[J].机械工程学报,2012,48(2):50-56.TAO J Y, LIU B, CHEN X. Study on performance and optimal design of pneumatic vibrator of repetitive shock machine on cold soak temperature [J]. Journal of Mechanical Engineering, 2012,48(2):50-56.(in Chinese) [15]胡俊峰,张宪民. 3自由度精密定位平台的运动特性和优化设计[J].光学 精密工程,2012,20(12): 2686-2695.HU J F, ZHANG X M. Kinematical properties and optimal design of 3-DOF precision positioning stage [J]. Opt. Precision Eng., 2012,20(12): 2686-2659.(in Chinese) [16]崔继文,刘雪明,谭久彬. 超精密级二维工作台的自标定[J].光学 精密工程,2012,20(9):1960-1966.CUI J W, LIU X M, TAN J B. Self-calibration for 2-D ultra-precision stage [J]. Opt. Precision Eng., 2012,20(9):1960-1966 .(in Chinese) [17]李成刚,尤晶晶,吴洪涛. 椭圆型弹性球铰链转动性能及疲劳强度研究[J].中国机械工程,2011,22(2):231-234.LI C G, YOU J J, WU H T. Study on rotation capability and fatigue strength of elliptical flexure spherical hinge [J]. China Mechanical Engineering, 2011,22(2):231-234.(in Chinese)