GU Hong-Guang, TUN Ze-Feng, ZHU Ming-Chao, XUAN Ming, LIU Hui. Infrared image enhancement based on generalized linear operation and bilateral filter[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3272-3282
GU Hong-Guang, TUN Ze-Feng, ZHU Ming-Chao, XUAN Ming, LIU Hui. Infrared image enhancement based on generalized linear operation and bilateral filter[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3272-3282 DOI: 10.3788/OPE.20132112.3272.
Infrared image enhancement based on generalized linear operation and bilateral filter
As classical infrared image enhancement methods based on Unsharp Masking(UM) suffer from terrible noise interference and halo effect
a new approach based on generalized linear operation and Bilateral Filtering (BF) was proposed here. Firstly
the elemental part of the image was extracted by using the BF and then operation models based on generalized linear operation were designed for the following enhancement. In the new operation scheme
the image details were nonlinearly segmented
denoised and amplified and the dynamic range of the elemental part was compressed while the detailed part was enhanced adaptively. Finally
the enhanced image was obtained by adding the processed elemental and detailed parts together nonlinearly. Furthermore
an assessment method for image quality was presented. Unlike the classical metric which only considers the average contrast enhancement
the modified one involves both local and general average contrast enhancements. Both the comparison experiments and measurement index indicate that the proposed method can compress the dynamic range of infrared images
amplify their details
and suppress the noise interference and halo effect. This technique has a significant contribution to the posterior image processing of thermal infrared cameras.
关键词
Keywords
references
[1]金伟其,刘斌,范永杰,等.红外图像细节增强技术研究进展[J].红外与激光工程,2011,40(12):2521-2527.JIN W Q, LIU B, FAN Y J, et al.. Review on infrared image detail enhancement techniques [J]. Infrared and Laser Engineering, 2011,40(12):2521-2527. (in Chinese)[2]吴家伟,武春风,庹文波. 红外图像实时显示增强系统设计[J].光学 精密工程,2009,17(10):2612-2619.WU J W, WU CH F ,TUO W B. Design of real-time infrared image enhancing system [J].Opt. Precision Eng.,2009,17(10): 2612-2619. (in Chinese)[3]张晓龙,刘英,孙强. 高精度非致冷长波红外热像仪的辐射标定[J]. 中国光学,2012,5(3):235-241.ZHANG X L,LIU Y,SUN Q. New method for eliminating non-uniformity background of IR image[J].Chinese Optics,2012,5(3):235-241.(in Chinese)[4]刘火平, 孟维平, 宋立维,等. 红外图像序列中不均匀背景消除新方法[J].液晶与显示,2012,27(4):539-544.LIU H P, MENG W P,SONG L W, et al.. New method for eliminating non-uniformity background of IR image [J].Chinese Journal of Liquid Crystals and Displays,2012,27(4): 539-544. (in Chinese)[5]孙海江,王延杰,刘伟宁.基于自适应平台阈值和拉普拉斯变换的红外图像增强[J].中国光学,2011,4(5):474-479.SUN H J,WANG Y J,LIU W N. Enhancement of infrared images based on adaptive plat form threshold and Laplace transformation[J].Chinese Optics,2011,4(5):474-479.(in Chinese)[6]黄梅, 吴志勇, 梁敏华,等. 暗背景下低灰度图像的实时增强[J].液晶与显示,2011,26(3):374-378.HUANG M, WU ZH Y, LIANG M H, et al.. Real-time enhancement method of low gray image under dark background [J]. Chinese Journal of Liquid Crystals and Displays,2012,26(3):374-378. (in Chinese)[7]PIZER S M,AMBUM E P,AUSTIN J D, et al.. Adaptive histogram equalization and its variations[J]. Computer Vision,Graphics,and Image Processing,1987,39(3):355-368.[8]ZUIDERVELD K. Contrast limited adaptive histogram equalization [J]. Graphics Gems IV,1994, 474-485[9]REZA A M. Realization of Contrast Limited Adaptive Histogram Equalization (CLAHE) for real-time image enhancement [J]. Journal of VLST Signal Precessing Systems for Signal,Image and Video Technolgy,2004,38(1):35-44.[10]BRANCHITTA F,DIANI M, CORSINI G,et al.. Dynamic-range compression and contrast enhancement in infrared imaging systems [J]. Opt. Eng., 2008, 47(7):076401.[11]BRANCHITTA F,DIANI M,CORSINI G,et al.. New technique for the visualization of high dynamic range infrared images [J]. Opt. Eng.2009,48(9): 096401. [12]TOMASI C,MANDUCHI R. Bilateral filtering for gray and color images [C]. Proceedings of the 1998 IEEE International Conference on Computer Vision, New Delhi, India, 1998, 839-846.[13]ELAD M. On the origin of the bilateral filter and ways to improve it [J]. IEEE Transactions on Image Processing, 2002, 11(10):1141-1151.[14]DURAND F, DORSEY J. Fast bilateral filtering for the display of high-dynamic-range images [J]. ACM Trans. Graphics, 2002,213:257-266.[15]PARIS S,DURAND F. A fast approximation of the bilateral filter using a signal processing approach [J]. International Journal of Computer Vision,2009, 81(1):24-526.[16]WEISS B. Fast median and bilateral filtering [J]. ACM Transactions on Graphics (TOG), 2006,25(3):518-526.[17]ZUO CH,CHEN Q,et al.. Display and detail enhancement for high-dynamic-range infrared images [J]. Opt. Eng. 2011, 50(12):127401.[18]DENG G. A Generalized Unsharp Masking Algorithm [J]. IEEE Transactions on Image Processing, 2011,20(5): 675 - 684.[19]SHVAYTSER H,PELEG S. Inversion of picture operators [J]. Pattern Recognition Letters, 1987,5(1):49-61.