YANG Li-ping, GU Xiao-hua,. Relative gradient histogram features for face recognition[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 152-159
YANG Li-ping, GU Xiao-hua,. Relative gradient histogram features for face recognition[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 152-159 DOI: 10.3788/OPE.20142201.0152.
Relative gradient histogram features for face recognition
As Pattern of Oriented Edge Magnitude (POEM) method can not acquire enough feature description information in illumination condition changes drastically
this paper analyzes the characteristic of relative gradient magnitude images and proposes a Relative Gradient Histogram Feature(RGHF) description method. The method decomposes the relative gradient magnitude image into several sub images according to the orientations of gradient. Each of these sub images is then filtered and encoded by using Local Binary Patterns(LBPs). Finally
all the encoded LBP histogram features are connected by a lexicographic ordering and are reduced to a low-dimensional subspace to form the RGHF
which is an illumination robust low-dimensional histogram feature. Experimental results on FERET and YaleB subsets indicate when the illumination variation is relative small
the recognition performance of the RGHF is comparable with that of the POEM
superior to that of the LBP significantly. Moreover
when the illumination variation is drastic
the recognition performance of RGHF is at least 5% higher than that of the POEM
more better than those of the POEM and LBP.
关键词
Keywords
references
GAO W, CAO B, SHAN S, et al.. The CAS-PEAL large-scale Chinese face database and baseline evaluations [J]. IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum., 2008, 38(1): 149-161.
YANG L P, GONG W G, LI W H, et al.. Random sampling subspaces locality preserving projections for face recognition [J]. Opt. Precision Eng., 2008, 16(8): 1465-1470. (in Chinese)
BELHUMEUR P, HESPANHA J, KRIEGMAN D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19(7): 711-720.
YANG L P, GU X H, YE H W. Sample locality preserving discriminant analysis for classification [J]. Opt. Precision Eng., 2011, 19(9): 2205-2213. (in Chinese)
YAN S, XU D, ZHANG B, et al.. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29(1):40-51.
LEE K C, HO J, YANG M H, et al.. Visual tracking and recognition using probabilistic appearance manifolds [J]. Comput. Vis. Image Understand. 2005, 99: 303-331.
CHELLAPPA R, NI J, PATEL V M. Remote identification of faces: problems, prospects, and progress [J]. Pattern Recognit. Lett., 2012, 33: 1849-1859.
VU N S, DEE H M, CAPLIER A. Face recognition using the POEM descriptor [J]. Pattern Recognit., 2012, 45: 2478-2488.
ZHANG T H, HUANG K Q, LI X L, et al.. Discriminative orthogonal neighborhood-preserving projections for classification [J]. IEEE Trans. Syst. Man Cybern. Part B-Cybern., 2010, 40(1): 253-263.
PINTO N, COX D. High-throughput-derived biologically-inspired features for unconstrained face recognition [J]. Image Vis. Comput., 2012, 30: 159-168.
ZHANG B, SHAN S, CHEN X, et al.. Histogram of Gabor phase patterns(HGPP): a novel object representation approach for face recognition [J]. IEEE Trans. Image Process, 2007, 16(1): 57-68.
AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns: application to face recognition [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28(12): 2037-2041.
OJANSIVU V, HEIKKILA J. Blur insensitive texture classification using local phase quantization [C]. Proceedings of Image and Signal Processing, 2008:236-243.
LOWE D G. Distinctive image features from scale-invariant keypoints [J]. Int. J. Comput. Vis., 2004, 60(2): 91-110.
ALBIOL A, MONZO D, MARTIN A, et al.. Face recognition using HOG-EBGM [J]. Pattern Recognit. Lett., 2008, 29: 1537-1543.
ZHANG T P, TANG Y Y, FANG B, et al.. Face recognition under varying illumination using gradientfaces [J]. IEEE Trans. Image Process., 2009, 18(11): 2599-2606.
GONG W G, YANG L P, GU X H, et al.. Illumination compensation based on multi-level wavelet decomposition for face recognition [J]. Opt. Precision Eng., 2008, 16(8): 1459-1464.(in Chinese)
VU N S, CAPLIER A.Enhanced patterns of oriented edge magnitudes for face recognition and image matching [J]. IEEE Trans. Image Process., 2012, 21(3): 1352-1365.