MA Peng-bin, BAOYIN He-xi, MU Jun-shan. Autonomous navigation of Mars probe based on optical observation of Martian moon[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 863-869
MA Peng-bin, BAOYIN He-xi, MU Jun-shan. Autonomous navigation of Mars probe based on optical observation of Martian moon[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 863-869 DOI: 10.3788/OPE.20142204.0863.
Autonomous navigation of Mars probe based on optical observation of Martian moon
an autonomous navigation method for a Mars probe based on the optical observation of Martian moon is proposed. By carrying the Mars probe on an optical camera
the method uses the camera to take the images for natural satellites of the Mars (Phobos
Deimos)and their backgrounds in the process of flying to Mars. The star position is used to determine precisely inertial pointing
then
the autonomous navigation of Mars is completed by obtained right ascension and declination data from optical observation. The sequential estimation algorithms based on Extended Kalman Filter(EKF) and Unscented Kalman Filter(UKF) are given. The results show that the precision of EKF is similar to that of the UKF
which means that the precision loss of the EKF is not much in the linearization process. At cruising in the second half
the closer is the camera to Mars
the higher the navigation precision is. When the distance is (1-5)×10
7
km from Mars and the data interval is set to be 1 min
the navigation accuracy can reach 10-100 km magnitude
and the speed accuracy is 0.01 m/s. When the measurement precision is 0.1"
the navigation precision is lowered an order of magnitude. In addition
the navigation precision of Deimos alone is higher than that of the Phobos
and both of them to be used will get the highest accuracy. Simulation computation results show that the autonomous navigation for Mars detectors by the Martian moon optical measurement can satisfy the requirement of high precision navigation.
关键词
Keywords
references
BATTIN R H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. Reston VA:American Institute of Aeronautics and Astronautics, 1999.
THOMAS C D, BORN G H. Viewing Phobos and Deimos for navigation Mariner 9[J]. Journal of Spacecraft and Rockets, 1974, 11:215-222.
BHASKARAN S, DESAI S D, DUMONT P J, et al. Orbit determination performance evaluation of the deep space 1 autonomous navigation system[C]. AIAA/AAS Space Flight Mechanics Meeting, Monterey, 1998.
RIEDEL J E, BHASKARAN S, DESAI S, et al. Deep space 1 technology validation report autonomous optical navigation[R]. Pasadena CA:JPL Publication, 2000.
BHASKARAN S, RIEDEL J E, SYNNOTT S P, et al.. The deep space 1 autonomous navigation system-A post-flight analysis[C]. AIAA/AAS Astrodynamics Specialist Conference, Denver, 2000.
FABRICIUS C, HOG E, MAKAROV V V, et al. The hipparcos and tycho catalogues[R]. ESA SP-1200, A1997(17).
HOG E, FABRICIUS C, MAKAROV V V, et al. The Tycho-2 catalogue of the 2.5 million brightest stars[J]. Astronomy & Astrophysics, 2000, 355(2):L27-L30.
孙瑾秋, 周军, 张臻, 等. 基于能量累加的空间目标星像质心定位[J]. 光学 精密工程, 2011, 19(12):3043-3048. SUN J Q, ZHOU J, ZHANG ZH, et al. Centroid location for space targets based on energy accumulation[J]. Opt. Precision Eng., 2011, 19(12): 3043-3048. (in Chinese)
魏新国, 徐佳, 张广军. 星敏感器质心定位的S曲线误差补偿[J]. 光学 精密工程 2013, 21(4):849-857. WEI X G, XU J, ZHANG G J. S-curve error compensation of centroiding location for star sensors[J].Opt. Precision Eng., 2013, 21(4):849-857.(in Chinese)
李黎. 深空探测轨道测定与控制[M]. 北京:国防工业出版社, 2012:112-117. LI L. Orbit Determination and Control for Deep Space Exploration[M]. Beijing:National Defense Industry Press, 2012:112-117. (in Chinese)
JACOBSON R A. The orbits and masses of the martian satellites and the libration of Phobos[J]. The Astronomical Journal, 2010, 139(2):668-679.
EUGENE F M, WILLIAM J F W. Solar System Astrophysics: Volume I Background Science and Inner Solar System[M]. Springer Science + Business Media, LLC, 2008.
RAOL J R, SINHA N K. On the orbit determination problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(3):274-291.
BAR-LTZHACK L Y, MEDAN Y. Efficient square root algorithm for measurement update in Kalman filtering[J]. Journal of Guidance and Control, 1983, 6(3):129-134.
JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[C]. Proceedings of the IEEE, 2004, 92(3):401-422.
ARULAMPALAM M S.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[C].IEEE Trans. Signal Processing, 2002, 50 (2):174-188.