XIE Chun, ZHANG Wei-min,. Comprehensive measurement errors of 5-axis turning-milling centers and their compensation strategies[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 1004-1011
A comprehensive error measurement plan was designed based on the structure and characters of the kinematic chain for a 5-axis turning-milling combine machine system to compensate errors. The measurement tests include two parts: the volumetric error between turning main spindle frame and milling spindle and the thermal error of turning main spindle. As the plan combined the tool and the working piece to be a complete kinematic chain
the problem of the turning main spindle chain error effect which was not considered in the single space measurement was solved. The comprehensive error compensation model of geometrical errors and thermal errors were also set up based on artificial neural network algorithm and then the volumetric error was compensated after measurement in body diagonals along three axes. The experiments show that the volumetric errors of four body diagonals are obviously decreased with the values from 15.24
μ
m to 50.83
μ
m after compensation and the compensation effects have been improved from 39.10% to 78.06%. The method improves volumetric error compensation accuracy.
关键词
Keywords
references
BOHEZ E L, ARIYAJUNYA B, SINLAPEECHEEWA C, et al. Systematic geometric rigid body error identification of 5-axis milling machines[J]. Computer-Aided Design, 2007, 39(4):229-244.
XIE CH, ZHANG W M. Structural kinematics and error law research of 5-axis turning-milling complex centers[J]. Advanced Materials Research, 2011, 148-149: 649-652.
李锐钢. 基于激光跟踪仪标定五轴数控加工中心主轴[J]. 光学 精密工程, 2012, 20(3): 477-483. LI R G. Calibration of tool spindle for 5-axis CNC machine using laser tracker[J]. Opt. Precision Eng., 2012, 20(3): 477-483. (in Chinese)
VAN TUTTERVELT C A, PENG J. Symbiosis of modelling and sensing to improve the accuracy of workpieces in small batch machining operations[J].The International Journal of Advanced Manufacturing Technology, 1999, 15(10):699-710.
RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-a review: Part Ⅱ: thermal errors[J]. International Journal of Machine Tools & Manufacture, 2000, 40(9):1257-1284.
LEETE D J. Automatic compensation of alignment errors in machine tools[J]. International Journal of Machine Tool Design and Research, 1961, 1(4):293-324.
FRENCH D, HUMPHRIES S H. Compensation for backlash and alignment errors in a numerically controlled machine tool by a digital computer program[J]. Proceedings of the 8th MTDR Conference, 1967, 8(2): 707-726.
SCHULTSCHIK R. The components of the volumetric accuracy[J]. Annals of CIRP, 1977, 25(1): 223-227.
CHEN J S, YUAN J X, NI J, et al. Real-time compensation of time-variant volumetric errors on a machining center[J]. J.Eng.Ind., 1993, 115(4):472-479.
LIN P D, EHMANN K F. Direct volumetric error evaluation for multi-axis machines[J]. Int. J. of Mach. Tools & Manufacture, 1993, 33(5):675-693.
CHUN X, ZHANG W M. Kinematic error model between milling spindle and bottom turret on turning-milling complex center[C]. Proceedings of the 4th Asia International Symposium on Mechatronics (AISM), 2010: 379-382.
夏毅敏, 张刚强, 罗松保, 等. 非球面超精密机床静压轴承温度场的分布[J]. 光学 精密工程, 2012, 20(8): 1759-1764. XIA Y M, ZHANG G Q, LUO S B, et al. Temperature field distribution of non-spherical hydrostatic bearings for ultra-precision machine tools[J]. Opt. Precision Eng., 2012, 20(8): 1759-1764. (in Chinese)
WEI ZH ZH, ZHANG G J, LI X.The application of machine vision in inspecting position-control accuracy of motor control systems[C]. Proceedings of the Fifth International Conference on Electrical Machines and Systems, Shenyang, P.R. China: ICEMS, 2001, 2:787-790.
IBARAKI S, HATA T. A new formulation of laser step diagonal measurement-Three dimensional case[J]. Precision Engineering, 2010, 34(3):516-525.
WANG C. A definition of volumetric error[J]. Manufacturing Engineering, 2005, 134(1):16-17.
SVOBODA O, BACH P, LIOTTO G, et al. Definitions and correlations of 3D volumetric positioning errors of CNC machining centers. Proceedings of the IMTS 2004 Manufacturing Conference, 2004(9): 1-8.
林伟青, 傅建中, 许亚洲, 等. 基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略[J]. 光学 精密工程, 2008, 16(9): 1682-1686. LIN W Q, FU J ZH, XU Y ZH, et al. Optimal sensor placement for thermal error identification of NC machine tool based on LS-SVM and genetic algorithm[J]. Opt. Precision Eng., 2008, 16(9): 1682-1686. (in Chinese)
苗恩铭, 龚亚运, 成天驹, 等. 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学 精密工程, 2013, 21(4):980-986. MIAO EN M, GONG Y Y, CHENG T J, et al. Application of support vector regression machine to thermal error modeling of machine tools[J]. Opt. Precision Eng., 2013, 21(4):980-986. (in Chinese)